Development of a Monoclonal Antibody Detection Assay for Species-Specific Identification of Abalone

2002 ◽  
Vol 4 (5) ◽  
pp. 454-462 ◽  
Author(s):  
Andreas L. Lopata ◽  
Thomas Luijx ◽  
Bartha Fenemore ◽  
Neville A. Sweijd ◽  
Peter A. Cook
2020 ◽  
Vol 9 (1) ◽  
pp. 82
Author(s):  
Issa Sy ◽  
Lena Margardt ◽  
Emmanuel O. Ngbede ◽  
Mohammed I. Adah ◽  
Saheed T. Yusuf ◽  
...  

Fascioliasis is a neglected trematode infection caused by Fasciola gigantica and Fasciola hepatica. Routine diagnosis of fascioliasis relies on macroscopic identification of adult worms in liver tissue of slaughtered animals, and microscopic detection of eggs in fecal samples of animals and humans. However, the diagnostic accuracy of morphological techniques and stool microscopy is low. Molecular diagnostics (e.g., polymerase chain reaction (PCR)) are more reliable, but these techniques are not routinely available in clinical microbiology laboratories. Matrix-assisted laser/desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a widely-used technique for identification of bacteria and fungi; yet, standardized protocols and databases for parasite detection need to be developed. The purpose of this study was to develop and validate an in-house database for Fasciola species-specific identification. To achieve this goal, the posterior parts of seven adult F. gigantica and one adult F. hepatica were processed and subjected to MALDI-TOF MS to create main spectra profiles (MSPs). Repeatability and reproducibility tests were performed to develop the database. A principal component analysis revealed significant differences between the spectra of F. gigantica and F. hepatica. Subsequently, 78 Fasciola samples were analyzed by MALDI-TOF MS using the previously developed database, out of which 98.7% (n = 74) and 100% (n = 3) were correctly identified as F. gigantica and F. hepatica, respectively. Log score values ranged between 1.73 and 2.23, thus indicating a reliable identification. We conclude that MALDI-TOF MS can provide species-specific identification of medically relevant liver flukes.


2001 ◽  
Vol 42 (9) ◽  
pp. 1492-1500 ◽  
Author(s):  
Howard S. Kruth ◽  
Ina Ifrim ◽  
Janet Chang ◽  
Lia Addadi ◽  
Daniele Perl-Treves ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yuan Li ◽  
Hongliu Ye ◽  
Meng Liu ◽  
Suquan Song ◽  
Jin Chen ◽  
...  

Abstract Background H7 subtype avian influenza has caused great concern in the global poultry industry and public health. The conventional serological subtype-specific diagnostics is implemented by hemagglutination inhibition (HI) assay despite lengthy operation time. In this study, an efficient, rapid and high-throughput competitive enzyme-linked immunosorbent assay (cELISA) was developed for detection of antibodies against H7 avian influenza virus (AIV) based on a novel monoclonal antibody specific to the hemagglutinin (HA) protein of H7 AIV. Results The reaction parameters including antigen coating concentration, monoclonal antibody concentration and serum dilution ratio were optimized for H7 antibody detection. The specificity of the cELISA was tested using antisera against H1 ~ H9, H11 ~ H14 AIVs and other avian viruses. The selected cut-off values of inhibition rates for chicken, duck and peacock sera were 30.11, 26.85 and 45.66% by receiver-operating characteristic (ROC) curve analysis, respectively. With HI test as the reference method, the minimum detection limits for chicken, duck and peacock positive serum reached 20, 21 and 2− 1 HI titer, respectively. Compared to HI test, the diagnostic accuracy reached 100, 98.6, and 99.3% for chicken, duck and peacock by testing a total of 400 clinical serum samples, respectively. Conclusions In summary, the cELISA assay developed in this study provided a reliable, specific, sensitive and species-independent serological technique for rapid detection of H7 antibody, which was applicable for large-scale serological surveillance and vaccination efficacy evaluation programs.


2018 ◽  
Vol 57 (5) ◽  
pp. 643-648
Author(s):  
Milena Kordalewska ◽  
Joanna Kalita ◽  
Zofia Bakuła ◽  
Anna Brillowska-Dąbrowska ◽  
Tomasz Jagielski

2008 ◽  
Vol 74 (10) ◽  
pp. 3306-3309 ◽  
Author(s):  
Kazuhiko Maeta ◽  
Tomoya Ochi ◽  
Keisuke Tokimoto ◽  
Norihiro Shimomura ◽  
Nitaro Maekawa ◽  
...  

ABSTRACT Species-specific identification of the major cooked and fresh poisonous mushrooms in Japan was performed using a real-time PCR system. Specific fluorescence signals were detected, and no nonspecific signals were detected. Therefore, we succeeded in developing a species-specific test for the identification of poisonous mushrooms within 1.5 h.


Check List ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 705-712
Author(s):  
Leila B. Guzmán ◽  
Enzo N. Serniotti ◽  
Roberto E. Vogler ◽  
Ariel A. Beltramino ◽  
Alejandra Rumi ◽  
...  

Omalonyx unguis (d’Orbigny, 1837) is a semi-slug inhabiting the Paraná river basin. This species belongs to Succineidae, a family comprising a few representatives in South America. In this work, we provide the first record for the species from Misiones Province, Argentina. Previous records available for Omalonyx in Misiones were identified to the genus level. We examined morphological characteristics of the reproductive system and used DNA sequences from cytochrome oxidase subunit I (COI) gene for species-specific identification. These new distributional data contribute to consolidate the knowledge of the molluscan fauna in northeastern Argentina.


Sign in / Sign up

Export Citation Format

Share Document