microRNAs differentially modulated in response to heat and drought stress in durum wheat cultivars with contrasting water use efficiency

2016 ◽  
Vol 17 (2-3) ◽  
pp. 293-309 ◽  
Author(s):  
Lorenzo Giusti ◽  
Erica Mica ◽  
Edoardo Bertolini ◽  
Anna Maria De Leonardis ◽  
Primetta Faccioli ◽  
...  
2012 ◽  
Vol 125 ◽  
pp. 49-60 ◽  
Author(s):  
Fulvia Rizza ◽  
Jaleh Ghashghaie ◽  
Sylvie Meyer ◽  
Loredana Matteu ◽  
Anna Maria Mastrangelo ◽  
...  

BMC Genomics ◽  
2013 ◽  
Vol 14 (1) ◽  
pp. 821 ◽  
Author(s):  
Alessio Aprile ◽  
Lenka Havlickova ◽  
Riccardo Panna ◽  
Caterina Marè ◽  
Grazia M Borrelli ◽  
...  

2015 ◽  
Vol 33 (4) ◽  
pp. 679-687 ◽  
Author(s):  
M.Z. IHSAN ◽  
F.S. EL-NAKHLAWY ◽  
S.M. ISMAIL

ABSTRACT Understanding the critical period of weed competition is indispensable in the development of an effective weed management program in field crops. Current experiment was planned to evaluate the critical growth period ofSetaria and level of yield losses associated with delay in weeding in rain-fed drip irrigated wheat production system of Saudi Arabia. Field experiment was conducted to evaluate the effect of weeding interval (07-21, 14-28, 21-35, 28-42 and 35-49 days after sowing) and drought stress (75% and 50% of field capacity) on Setaria growth, wheat yield and water use efficiency. Season long weedy check and wellwatered (100% FC) plots were also maintained for comparison. Weeding interval and drought stress significantly (p ≤ 0.05) affected the growth and yield of Setaria and wheat. Drought stress from 75% to 50% FC resulted in reductions of 29-40% in Setaria height, 14-27% in Setaria density and 11-26% in Setaria dry biomass. All weeding intervals except 35-49 DAS significantly suppressedSetaria growth as compared with control. Delay in weeding increased weed-crop competition interval and reduced wheat yield and yield contributors. Therefore, the lowest yield of 1836 kg ha-1 was attained for weeding interval of 35-49 DAS at 50% FC. Water use efficiency and harvest index increased with decreasing FC levels but reduced with delay in weeding. Correlation analysis predicted negative association ofSetariadensity with wheat yield and yield contributors and the highest negative association was for harvest index (-0.913) and water use efficiency (-0.614). Early management of Setaria is imperative for successful wheat production otherwise yield losses are beyond economical limits.


Author(s):  
A.R. Bahramnejad ◽  
H. Heidari Sharif Abad ◽  
H. Madani

Background: Grass pea (Lathyrus sativus L.) is a crop of immense economic significance. It is one of the most resilient to climate changes and to be survival food during drought-triggered famines. Methods: In a field study split factorial experiment based on a randomized complete block design with 3 replications were used, effects of irrigation regimes (50, 75 and 100% evaporation of Pan class A) and different rates of phosphorous fertilizer (triple superphosphate 0, 60 and 120 kg/ha) on growth and yield of two grass pea ecotypes (Lalehzar and Sharekord) in Lalezar area (Kerman province, Iran) was carried out during 2018 and 2019. Result: The results showed that drought stress reduced grass pea seed yield (401 kg/ha-1) and biological yield (863 kg/ha-1) and this reduction was depended on the severity of stress. In the other side, application of phosphorous fertilizer (60 kg/ha-1) increased grass pea yield (2401 kg/ha-1). This means that phosphorus fertilizer could partiaiiy offset the effect of drought stress and had a significant effect on the water use efficiency and phosphorus agronomic efficiency. Finally, drought stress, either no-application phosphorus fertilizer, could decrease yield. Overally, Shahrekord ecotype showed the higher and most desirable grain yield (2401 kg/ha-1), biological yield (5612 kg/ha-1), grain water use efficiency and biological water use efficiency, respectively, with (0.74 and 1.72 m3 water/ha-1) and phosphorus agronomic efficiency (18.76 kg yield/kg P) to the applied treatments (75% irrigation+ triple superphosphate fertilizer 60 kg/ha).


2020 ◽  
Vol 8 (10) ◽  
pp. 1565 ◽  
Author(s):  
Abraham Mulu Oljira ◽  
Tabassum Hussain ◽  
Tatoba R. Waghmode ◽  
Huicheng Zhao ◽  
Hongyong Sun ◽  
...  

Soil salinity is one of the most important abiotic stresses limiting plant growth and productivity. The breeding of salt-tolerant wheat cultivars has substantially relieved the adverse effects of salt stress. Complementing these cultivars with growth-promoting microbes has the potential to stimulate and further enhance their salt tolerance. In this study, two fungal isolates, Th4 and Th6, and one bacterial isolate, C7, were isolated. The phylogenetic analyses suggested that these isolates were closely related to Trichoderma yunnanense, Trichoderma afroharzianum, and Bacillus licheniformis, respectively. These isolates produced indole-3-acetic acid (IAA) under salt stress (200 mM). The abilities of these isolates to enhance salt tolerance were investigated by seed coatings on salt-sensitive and salt-tolerant wheat cultivars. Salt stress (S), cultivar (C), and microbial treatment (M) significantly affected water use efficiency. The interaction effect of M x S significantly correlated with all photosynthetic parameters investigated. Treatments with Trichoderma isolates enhanced net photosynthesis, water use efficiency and biomass production. Principal component analysis revealed that the influences of microbial isolates on the photosynthetic parameters of the different wheat cultivars differed substantially. This study illustrated that Trichoderma isolates enhance the growth of wheat under salt stress and demonstrated the potential of using these isolates as plant biostimulants.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1318 ◽  
Author(s):  
Zsuzsanna Farkas ◽  
Emese Varga-László ◽  
Angéla Anda ◽  
Ottó Veisz ◽  
Balázs Varga

The effects of simulated waterlogging, drought stress and their combination were examined in a model experiment in Martonvásár, Hungary, in 2018. Four modern winter wheat varieties (‘Mv Toborzó’ (TOB), ‘Mv Mambó’ (MAM), ‘Mv Karizma’ (KAR), ‘Mv Pálma’ (PAL)) and one old Hungarian winter wheat cultivar (‘Bánkúti 1201’ (BKT)) were tested. Apart from the control treatment (C), the plants were exposed to two different abiotic stresses. To simulate waterlogging (WL), plants were flooded at four leaf stage, while in the WL + D treatment, they were stressed both by waterlogging and by simulated drought stress at the early stage of plant development and at the heading stage, respectively. The waterlogging treatment resulted in a significant decrease in plant biomass (BKT, TOB), number of spikes (TOB), grain yield (BKT, TOB), water use (BTK) and water-use efficiency (TOB, MAM, PAL) compared to the controls. The combined treatment (WL + D) led to a significant decrease in plant height (BTK, MAM, KAR), number of spikes (BTK, TOB, MAM, KAR), thousand kernel weight (TOB), harvest index (BTK), biomass, grain yield, water-use efficiency (in all varieties) and water use (BKT, TOB, MAM, KAR) of the plants. The best water-use efficiency was observed for MAM; therefore, this genotype could be recommended for cultivation at stress prone areas. The varieties MAM, KAR and PAL also showed good adaptability.


Sign in / Sign up

Export Citation Format

Share Document