Evolution of growth rates under the constraint of growth-development trade-off in a fish

2011 ◽  
Vol 54 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Shingo Fujimoto ◽  
Maiko Kawajiri ◽  
Yuya Suzuki ◽  
Kazunori Yamahira
2016 ◽  
Author(s):  
Shraddha Karve ◽  
Devika Bhave ◽  
Dhanashri Nevgi ◽  
Sutirth Dey

AbstractIn nature, organisms are simultaneously exposed to multiple stresses (i.e. complex environments) that often fluctuate unpredictably. While both these factors have been studied in isolation, the interaction of the two remains poorly explored. To address this issue, we selected laboratory populations ofEscherichia coliunder complex (i.e. stressful combinations of pH, H2O2and NaCl) unpredictably fluctuating environments for ~900 generations. We compared the growth rates and the corresponding trade-off patterns of these populations to those that were selected under constant values of the component stresses (i.e. pH, H2O2and NaCl) for the same duration. The fluctuation-selected populations had greater mean growth rate and lower variation for growth rate over all the selection environments experienced. However, while the populations selected under constant stresses experienced severe tradeoffs in many of the environments other than those in which they were selected, the fluctuation-selected populations could by-pass the across-environment trade-offs completely. Interestingly, trade-offs were found between growth rates and carrying capacities. The results suggest that complexity and fluctuations can strongly affect the underlying trade-off structure in evolving populations.


2019 ◽  
Vol 33 (4) ◽  
pp. 549-566 ◽  
Author(s):  
Michael Weinstein ◽  
Melissa N. Liotta ◽  
Aaron Solitt ◽  
Adam Hunt ◽  
Jessica K. Abbott ◽  
...  

2014 ◽  
Vol 62 (1) ◽  
pp. 48 ◽  
Author(s):  
C. H. Lusk ◽  
K. M. Sendall ◽  
P. J. Clarke

A trade-off between shade tolerance and growth in open conditions is widely believed to underlie the dynamics of humid forests. Little is known about how the growth versus shade tolerance trade-off interacts with other major trade-offs associated with differential adaptation to major environmental factors besides light. We asked whether the growth versus shade tolerance trade-off differed between subtropical rainforest tree assemblages native to basaltic (fertile) and rhyolitic (infertile) soils in northern New South Wales, because of the allocational costs of adaptation to low nutrient availability. Seedling relative growth rates of six basalt specialists and five rhyolite specialists were measured in a glasshouse and the minimum light requirements of each species were quantified in the field by determining the 10th percentile of juvenile tree distributions in relation to understorey light availability. A similar range of light requirements was observed in the two assemblages, and although the two fastest growing species were basalt specialists, seedling growth rates did not differ significantly between the two substrates. The overall relationship between light requirements and growth rate was weak, and there was no compelling evidence that the slope or elevation of this relationship differed between the two assemblages. Growth rates were significantly correlated, overall, with specific leaf area, and marginally with leaf area ratio. The apparent similarity of the growth versus shade tolerance trade-off in the two suites of species could reflect effects of leaf nutrient content on respiration rates; basalt specialists tended to have a smaller root mass fraction, but this may have been offset by the effects of leaf nitrogen status on respiration rates, with higher respiration rates expected on fertile basaltic soils. However, the results might also partly reflect impairment of the field performance of two basalt specialists that were heavily attacked by natural enemies.


1997 ◽  
Vol 75 (2) ◽  
pp. 335-337 ◽  
Author(s):  
Anthony P. Farrell ◽  
William Bennett ◽  
Robert H. Devlin

We examined the consequence of remarkably fast growth rates in transgenic fish, using swimming performance as a physiological fitness variable. Substantially faster growth rates were achieved by the insertion of an "all-salmon" growth hormone gene construct in transgenic coho salmon (Oncorhynchus kisutch). On an absolute speed basis, transgenic fish swam no faster at their critical swimming speed than smaller non-transgenic controls, and much slower than older non-transgenic controls of the same size. Thus, we find a marked trade-off between growth rate and swimming performance, and these results suggest that transgenic fish may be an excellent model to evaluate existing ideas regarding physiological design.


2014 ◽  
Vol 4 (18) ◽  
pp. 3675-3688 ◽  
Author(s):  
Christopher D. Philipson ◽  
Daisy H. Dent ◽  
Michael J. O'Brien ◽  
Juliette Chamagne ◽  
Dzaeman Dzulkifli ◽  
...  

1999 ◽  
Vol 354 (1391) ◽  
pp. 1763-1782 ◽  
Author(s):  
D. M. Newbery ◽  
D. N. Kennedy ◽  
G. H. Petol ◽  
L. Madani ◽  
C. E. Ridsdale

Changes in species composition in two 4–ha plots of lowland dipterocarp rainforest at Danum, Sabah, were measured over ten years (1986 to 1996) for trees greater than or equal to 10 cm girth at breast height (gbh). Each included a lower–slope to ridge gradient. The period lay between two drought events of moderate intensity but the forest showed no large lasting responses, suggesting that its species were well adapted to this regime. Mortality and recruitment rates were not unusual in global or regional comparisons. The forest continued to aggrade from its relatively (for Sabah) low basal area in 1986 and, together with the very open upper canopy structure and an abundance of lianas, this suggests a forest in a late stage of recovery from a major disturbance, yet one continually affected by smaller recent setbacks. Mortality and recruitment rates were not related to population size in 1986, but across subplots recruitment was positively correlated with the density and basal area of small trees (10 to <50 cm gbh) forming the dense understorey. Neither rate was related to topography. While species with larger mean gbh had greater relative growth rates (rgr) than smaller ones, subplot mean recruitment rates were correlated with rgr among small trees. Separating understorey species (typically the Euphorbiaceae) from the overstorey (Dipterocarpaceae) showed marked differences in change in mortality with increasing gbh: in the former it increased, in the latter it decreased. Forest processes are centred on this understorey quasi–stratum. The two replicate plots showed a high correspondence in the mortality, recruitment, population changes and growth rates of small trees for the 49 most abundant species in common to both. Overstorey species had higher rgrs than understorey ones, but both showed considerable ranges in mortality and recruitment rates. The supposed trade–off in traits, viz slower rgr, shade tolerance and lower population turnover in the understorey group versus faster potential growth rate, high light responsiveness and high turnover in the overstorey group, was only partly met, as some understorey species were also very dynamic. The forest at Danum, under such a disturbance–recovery regime, can be viewed as having a dynamic equilibrium in functional and structural terms. A second trade–off in shade–tolerance versus drought–tolerance is suggested for among the understorey species. A two–storey (or vertical component) model is proposed where the understorey–overstorey species’ ratio of small stems (currently 2:1) is maintained by a major feedback process. The understorey appears to be an important part of this forest, giving resilience against drought and protecting the overstorey saplings in the long term. This view could be valuable for understanding forest responses to climate change where drought frequency in Borneo is predicted to intensify in the coming decades.


2017 ◽  
Vol 189 (2) ◽  
pp. 170-177 ◽  
Author(s):  
Ben A. Ward ◽  
Emilio Marañón ◽  
Boris Sauterey ◽  
Jonathan Rault ◽  
David Claessen

2019 ◽  
Author(s):  
Avril Weinbach ◽  
Nicolas Loeuille ◽  
Rudolf P. Rohr

AbstractRecent pollinator population declines threaten pollination services and greatly impact plant-pollinator coevolution. We investigate how such evolutionary effects affect plant-pollinator coexistence. Using eco-evolutionary dynamics, we study the evolution of plant attractiveness in a simple pollinator-plant model, assuming an allocation trade-off between attractiveness (e.g. nectar production, flower shape and size) and plant intrinsic growth rates. First, we investigated how attractiveness evolution changes species persistence, biomass production, and the intensity of the mutualism (as a proxy for pollination services). We show that the shape of the allocation trade-off is key in determining the outcome of the eco-evolutionary dynamics and that concave trade-offs allow convergence to stable plant-pollinator coexistence. Then we analyse the effect of pollinator population declines on the eco-evolutionary dynamics. Decreasing intrinsic growth rates of pollinator population results in a plant-evolution driven disappearance of the mutualistic interaction, eventually leading to pollinator extinction. With asymmetric mutualism favouring the pollinator, the evolutionary disappearance of the mutualistic interaction is delayed. Our results suggest that evolution may account for the current collapse of pollination systems and that restoration attempts should be enforced early enough to prevent potential negative effects driven by plant evolution.


2019 ◽  
Vol 116 (30) ◽  
pp. 15282-15287 ◽  
Author(s):  
Beth Roskilly ◽  
Eric Keeling ◽  
Sharon Hood ◽  
Arnaud Giuggiola ◽  
Anna Sala

Consistent with a ubiquitous life history trade-off, trees exhibit a negative relationship between growth and longevity both among and within species. However, the mechanistic basis of this life history trade-off is not well understood. In addition to resource allocation conflicts among multiple traits, functional conflicts arising from individual morphological traits may also contribute to life history trade-offs. We hypothesized that conflicting functional effects of xylem structural traits contribute to the growth-longevity trade-off in trees. We tested this hypothesis by examining the extent to which xylem morphological traits (i.e., wood density, tracheid diameters, and pit structure) relate to growth rates and longevity in two natural populations of the conifer speciesPinus ponderosa. Hydraulic constraints arise as trees grow larger and xylem anatomical traits adjust to compensate. We disentangled the effects of size through ontogeny in individual trees and growth rates among trees on xylem traits by sampling each tree at multiple trunk diameters. We found that the oldest trees had slower lifetime growth rates compared with younger trees in the studied populations, indicating a growth-longevity trade-off. We further provide evidence that a single xylem trait, pit structure, with conflicting effects on xylem function (hydraulic safety and efficiency) relates to the growth-longevity trade-off in a conifer species. This study highlights that, in addition to trade-offs among multiple traits, functional constraints based on individual morphological traits like that of pit structure provide mechanistic insight into how and when life history trade-offs arise.


Sign in / Sign up

Export Citation Format

Share Document