No trans-generational maternal effects of early-life corticosterone exposure on neophobia and antipredator behaviour in the house sparrow

Author(s):  
Valeria Marasco ◽  
Sophie M. Dupont ◽  
Jacquelyn K. Grace ◽  
Frédéric Angelier
2014 ◽  
Vol 29 (2) ◽  
pp. 268-276 ◽  
Author(s):  
Timothy S. Mitchell ◽  
Jessica A. Maciel ◽  
Fredric J. Janzen

2019 ◽  
Vol 374 (1770) ◽  
pp. 20180117 ◽  
Author(s):  
Ben Dantzer ◽  
Constance Dubuc ◽  
Ines Braga Goncalves ◽  
Dominic L. Cram ◽  
Nigel C. Bennett ◽  
...  

The phenotype of parents can have long-lasting effects on the development of offspring as well as on their behaviour, physiology and morphology as adults. In some cases, these changes may increase offspring fitness but, in others, they can elevate parental fitness at a cost to the fitness of their offspring. We show that in Kalahari meerkats ( Suricata suricatta ), the circulating glucocorticoid (GC) hormones of pregnant females affect the growth and cooperative behaviour of their offspring. We performed a 3-year experiment in wild meerkats to test the hypothesis that GC-mediated maternal effects reduce the potential for offspring to reproduce directly and therefore cause them to exhibit more cooperative behaviour. Daughters (but not sons) born to mothers treated with cortisol during pregnancy grew more slowly early in life and exhibited significantly more of two types of cooperative behaviour (pup rearing and feeding) once they were adults compared to offspring from control mothers. They also had lower measures of GCs as they aged, which could explain the observed increases in cooperative behaviour. Because early life growth is a crucial determinant of fitness in female meerkats, our results indicate that GC-mediated maternal effects may reduce the fitness of offspring, but may elevate parental fitness as a consequence of increasing the cooperative behaviour of their daughters. This article is part of the theme issue ‘Developing differences: early-life effects and evolutionary medicine’.


2021 ◽  
Author(s):  
Alice Baniel ◽  
Lauren Petrullo ◽  
Arianne Mercer ◽  
Laurie Reitsema ◽  
Sierra Sams ◽  
...  

Early-life gut microbial colonization is an important process shaping host physiology, immunity and long-term health outcomes in humans and other animals. However, our understanding of this dynamic process remains poorly investigated in wild animals, where developmental mechanisms can be better understood within ecological and evolutionary relevant contexts. Using 16s rRNA amplicon sequencing on 525 fecal samples from a large cohort of infant and juvenile geladas (Theropithecus gelada), we characterized gut microbiome maturation during the first three years of life and assessed the role of maternal effects in shaping offspring microbiome assembly. Microbial diversity increased rapidly in the first months of life, followed by more gradual changes until weaning. As expected, changes in gut microbiome composition and function with increasing age reflected progressive dietary transitions: in early infancy when infants rely heavily on their mother's milk, microbes that facilitate milk glycans and lactose utilization dominated, while later in development as graminoids are progressively introduced into the diet, microbes that metabolize plant complex polysaccharides became dominant. Furthermore, the microbial community of nursing infants born to first-time (primiparous) mothers was more "milk-oriented" compared to similarly-aged infants born to experienced (multiparous) mothers. Comparisons of matched mother-offspring fecal samples to random dyads did not support vertical transmission as a conduit for these maternal effects, which instead could be explained by slower phenotypic development (and associated slower gut microbiome maturation) in infants born to first-time mothers. Together, our findings highlight the dynamic nature of gut colonization


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1285 ◽  
Author(s):  
Chao Li ◽  
Tao Wang ◽  
Min Zhang ◽  
Jun Xu

Maternal effects may play an important role in life history and offspring performance of aquatic plants. Performance and response of maternal and offspring aquatic plants can affect population dynamics and community composition. Understanding maternal effect can help to fill a gap in the knowledge of aquatic plant life cycles, and provide important insights for species’ responses to climate change and eutrophication. This study showed that maternal warming and eutrophication significantly affected the early life stages of curled pondweed, Potamogeton crispus, a submerged macrophyte. Propagule in warmed condition had higher germination percentages and a shorter mean germination time than those under ambient conditions. However, propagule germination in phosphorus addition treatment was inhibited due to the negative effect of eutrophication, e.g., phytoplankton competition and deteriorated underwater light. Meanwhile, elevated temperature led to a decrease of total nitrogen concentrations and an increase of carbon: nitrogen ratios in plant tissues, which may suggest that P. crispus will allocate more nutrients to propagules in order to resist the adverse effects of high temperature. A subsequent germination experiment in the same ambient condition showed that maternal warming promoted seedling emergence in contrast to maternal phosphorus addition. Consequently, global warming could modify population growth via maternal environmental effects on early life histories, while increased anthropogenic nutrient inputs may result in a decreased submerged macrophyte. These maternal effects on offspring performance may change competition and the survival of early life-history stages under climate warming and eutrophication through changing the ecological stoichiometry of plant tissue.


2009 ◽  
Vol 364 (1534) ◽  
pp. 3419-3427 ◽  
Author(s):  
D. S. Gardner ◽  
S. E. Ozanne ◽  
K. D. Sinclair

The early-life developmental environment is instrumental in shaping our overall adult health and well-being. Early-life diet and endocrine exposure may independently, or in concert with our genetic constitution, induce a pathophysiological process that amplifies with age and leads to premature morbidity and mortality. Recently, this has become known as ‘programming’ but is akin to ‘maternal effects’ described for many years in the biological sciences and is defined as any influence that acts during critical developmental windows to induce long-term changes in the organisms' phenotype. To date, such delayed maternal effects have largely been characterized in terms of susceptibility to cardiovascular or metabolic disease. Here, we review evidence from experimental animal species, non-human primates and man for an effect of the early-life nutritional environment on adult fecundity and fertility. In addition, using a database of pedigree sheep, we also specifically test the hypothesis that being born small for gestational age with or without post-natal growth acceleration directly programmes fertility. We conclude that there is a lack of compelling evidence to suggest pre-natal undernutrition may directly reduce adult fecundity and fertility, but may exert some effects secondarily via an increased incidence of ‘metabolic syndrome’. Possible effects of being born relatively large on subsequent fecundity and fertility warrant further investigation.


2020 ◽  
Author(s):  
Samantha Victoria Beck ◽  
Katja Räsänen ◽  
Camille A. Leblanc ◽  
Skúli Skúlason ◽  
Zophonías O. Jónsson ◽  
...  

Abstract Background Organismal fitness can be determined at early life-stages, but phenotypic variation at these early life-stages has rarely been considered in studies on evolutionary diversification. The trophic apparatus has been shown to contribute to sympatric resource-mediated divergence in several taxa. However, processes underlying this diversification are poorly understood. Using a phenotypically variable morph of Icelandic Arctic charr (Salvelinus alpinus), we reared offspring from multiple families under standardized laboratory conditions and tested to what extent family (i.e. direct genetic and maternal effects) contributes to offspring morphology at hatching (H) and first feeding (FF). To understand the underlying mechanisms behind early life-stage variation in morphology, we examined how craniofacial shape varied according to family, egg size, offspring size and individual candidate genes related to craniofacial development. Finally, we assessed whether craniofacial shape and expression of genes related to craniofacial development covaried. Results We found effects of family for offspring craniofacial shape at both H and FF, whilst relative expression levels of Sgk1 (a gene involved in craniofacial shape divergence) correlated with craniofacial shape at FF. However, there were no evidence to suggest that mean egg size or individual offspring size influenced offspring morphology. Conclusions This study provides evidence for within population family effects for phenotypic variation in trophic morphology, indicating the potential for genetic and/or maternal effects to facilitate resource polymorphism.


2018 ◽  
Author(s):  
Ben Dantzer ◽  
Constance Dubuc ◽  
Ines Braga Goncalves ◽  
Dominic L. Cram ◽  
Nigel C. Bennett ◽  
...  

AbstractThe phenotype of parents can have long-lasting effects on the development of offspring as well as on their behaviour, physiology, and morphology as adults. In some cases, these changes may increase offspring fitness but, in others, they can elevate parental fitness at a cost to the fitness of their offspring. We show that in Kalahari meerkats (Suricata suricatta), the circulating glucocorticoid (GC) hormones of pregnant females affect the growth and cooperative behaviour of their offspring. We performed a 3-year experiment in wild meerkats to test the hypothesis that GC-mediated maternal effects reduce the potential for offspring to reproduce directly and therefore cause them to exhibit more cooperative behaviour. Daughters (but not sons) born to mothers treated with cortisol during pregnancy grew more slowly early in life and exhibited significantly more of two types of cooperative behaviour (pup rearing and feeding) once they were adults compared to offspring from control mothers. They also had lower measures of GCs as they aged, which could explain the observed increases in cooperative behaviour. Because early life growth is a crucial determinant of fitness in female meerkats, our results indicate that GC-mediated maternal effects may reduce the fitness of offspring, but may elevate parental fitness as a consequence of increasing the cooperative behaviour of their daughters.


2016 ◽  
Vol 3 (10) ◽  
pp. 160471 ◽  
Author(s):  
Kate M. Quigley ◽  
Bette L. Willis ◽  
Line K. Bay

Coral endosymbionts in the dinoflagellate genus Symbiodinium are known to impact host physiology and have led to the evolution of reef-building, but less is known about how symbiotic communities in early life-history stages and their interactions with host parental identity shape the structure of coral communities on reefs. Differentiating the roles of environmental and biological factors driving variation in population demographic processes, particularly larval settlement, early juvenile survival and the onset of symbiosis is key to understanding how coral communities are structured and to predicting how they are likely to respond to climate change. We show that maternal effects (that here include genetic and/or effects related to the maternal environment) can explain nearly 24% of variation in larval settlement success and 5–17% of variation in juvenile survival in an experimental study of the reef-building scleractinian coral, Acropora tenuis . After 25 days on the reef, Symbiodinium communities associated with juvenile corals differed significantly between high mortality and low mortality families based on estimates of taxonomic richness, composition and relative abundance of taxa. Our results highlight that maternal and familial effects significantly explain variation in juvenile survival and symbiont communities in a broadcast-spawning coral, with Symbiodinium type A3 possibly a critical symbiotic partner during this early life stage.


2021 ◽  
Vol 238 ◽  
pp. 105898
Author(s):  
Gustavo J. Macchi ◽  
Marina V. Diaz ◽  
Ezequiel Leonarduzzi ◽  
Martín Ehrlich ◽  
Laura Machinandiarena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document