nutritional environment
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 43)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Adam N. Zeeman ◽  
Isabel M. Smallegange ◽  
Emily Burdfield Steel ◽  
Astrid T. Groot ◽  
Kathryn A. Stewart

Abstract Background Under strong sexual selection, certain species evolve distinct intrasexual, alternative reproductive tactics (ARTs). In many cases, ARTs can be viewed as environmentally-cued threshold traits, such that ARTs coexist if their relative fitness alternates over the environmental cue gradient. Surprisingly, the chemical ecology of ARTs has been underexplored in this context. To our knowledge, no prior study has directly quantified pheromone production for ARTs in a male-polymorphic species. Here, we used the bulb mite—in which males are either armed fighters that kill conspecifics, or unarmed scramblers (which have occasionally been observed to induce mating behavior in other males)—as a model system to gain insight into the role of pheromones in the evolutionary maintenance of ARTs. Given that scramblers forgo investment into weaponry, we tested whether scramblers produce higher quantities of the putative female sex-pheromone α-acaridial than fighters, which would improve the fitness of the scrambler phenotype through female mimicry by allowing avoidance of aggression from competitors. To this end, we sampled mites from a rich and a poor nutritional environment and quantified their production of α-acaridial through gas chromatography analysis. Results We found a positive relationship between pheromone production and body size, but males exhibited a steeper slope in pheromone production with increasing size than females. Females exhibited a higher average pheromone production than males. We found no significant difference in slope of pheromone production over body size between fighters and scramblers. However, scramblers reached larger body sizes and higher pheromone production than fighters, providing some evidence for a potential female mimic strategy adopted by large scramblers. Pheromone production was significantly higher in mites from the rich nutritional environment than the poor environment. Conclusion Further elucidation of pheromone functionality in bulb mites, and additional inter- and intrasexual comparisons of pheromone profiles are needed to determine if the observed intersexual and intrasexual differences in pheromone production are adaptive, if they are a by-product of allometric scaling, or diet-mediated pheromone production under weak selection. We argue chemical ecology offers a novel perspective for research on ARTs and other complex life-history traits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Charles A. LeDuc ◽  
Alicja A. Skowronski ◽  
Michael Rosenbaum

LEP is a pleiotropic gene and the actions of leptin extend well beyond simply acting as the signal of the size of adipose tissue stores originally proposed. This is a discussion of the multi-system interactions of leptin with the development of the neural systems regulating energy stores, and the subsequent maintenance of energy stores throughout the lifespan. The prenatal, perinatal, and later postnatal effects of leptin on systems regulating body energy stores and on the energy stores themselves are heavily influenced by the nutritional environment which leptin exposure occurs. This review discusses the prenatal and perinatal roles of leptin in establishing the neuronal circuitry and other systems relevant to the adiposity set-point (or “threshold”) and the role of leptin in maintaining weight homeostasis in adulthood. Therapeutic manipulation of the intrauterine environment, use of leptin sensitizing agents, and identification of specific cohorts who may be more responsive to leptin or other means of activating the leptin signaling pathway are ripe areas for future research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lucy Rebecca Davies ◽  
Volker Loeschcke ◽  
Mads F. Schou ◽  
Andreas Schramm ◽  
Torsten N. Kristensen

AbstractExperiments manipulating the nutritional environment and the associated microbiome of animals have demonstrated their importance for key fitness components. However, there is little information on how macronutrient composition and bacterial communities in natural food sources vary across seasons in nature and on how these factors affect the fitness components of insects. In this study, diet samples from an orchard compost heap, which is a natural habitat for many Drosophila species and other arthropods, were collected over 9 months covering all seasons in a temperate climate. We developed D. melanogaster on diet samples and investigated stress resistance and life-history traits as well as the microbial community of flies and compost. Nutrient and microbial community analysis of the diet samples showed marked differences in macronutrient composition and microbial community across seasons. However, except for the duration of development on these diet samples and Critical Thermal maximum, fly stress resistance and life-history traits were unaffected. The resulting differences in the fly microbial community were also more stable and less diverse than the microbial community of the diet samples. Our study suggests that when D. melanogaster are exposed to a vastly varying nutritional environment with a rich, diverse microbial community, the detrimental consequences of an unfavourable macronutrient composition are offset by the complex interactions between microbes and nutrients.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mehmet Kizilaslan ◽  
Yunus Arzik ◽  
Mehmet Ulas Cinar ◽  
Yusuf Konca

Abstract Use of genomic information in ruminant production systems can help relieve concerns related to food security and sustainability of production. Nutritional genomics (i.e., Nutrigenomics) is a field of research that is interested in all types of reciprocal interactions between nutrients and genomes of organisms, i.e., variable patterns of gene expression and effect of genetic variations on the nutritional environment. Devising a revolutionizing analytical approach to traditional ruminant nutrition research, the relatively novel area of ruminant nutrigenomics has several studies concerning different aspects of animal production systems. This paper aims to review the current nutrigenomics research in the frame of how nutrition of ruminants can be modified accounting for individual genetic backgrounds and gene/diet relationships behind productivity, quality, efficiency, disease resistance, fertility, and GHG emissions. Furthermore, current challenges facing ruminant nutrigenomics are evaluated and future directions for the novel area are strongly argued by this review.


2021 ◽  
Author(s):  
Michelle R Scribner ◽  
Amelia Carole Stephens ◽  
Justin L Huong ◽  
Anthony R. Richardson ◽  
Vaughn S Cooper

The evolution of bacterial populations during infections can be influenced by various factors including available nutrients, the immune system, and competing microbes, rendering it difficult to identify the specific forces that select on evolved traits. The genomes of Pseudomonas aeruginosa isolated from the airway of patients with cystic fibrosis (CF), for example, have revealed commonly mutated genes, but which phenotypes led to their prevalence is often uncertain. Here, we focus on effects of nutritional components of the CF airway on genetic adaptations by P. aeruginosa grown in either well-mixed (planktonic) or biofilm-associated conditions. After only 80 generations of experimental evolution in a simple medium with glucose, lactate, and amino acids, all planktonic populations diversified into lineages with mutated genes common to CF infections: morA, encoding a regulator of biofilm formation, or lasR, encoding a quorum sensing regulator that modulates the expression of virulence factors. Although mutated quorum sensing is often thought to be selected in vivo due to altered virulence phenotypes or social cheating, isolates with lasR mutations demonstrated increased fitness when grown alone and outcompeted the ancestral PA14 strain. Nonsynonymous SNPs in morA increased fitness in a nutrient concentration-dependent manner during planktonic growth and surprisingly also increased biofilm production. Populations propagated in biofilm conditions also acquired mutations in loci associated with chronic infections, including lasR and cyclic-di-GMP regulators roeA and wspF. These findings demonstrate that nutrient conditions and biofilm selection are alone sufficient to select mutants with problematic clinical phenotypes including increased biofilm and altered quorum sensing.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1602
Author(s):  
Charalampos Siristatidis ◽  
Konstantinos Dafopoulos ◽  
Michail Papapanou ◽  
Sofoklis Stavros ◽  
Abraham Pouliakis ◽  
...  

Metabolomics emerged to give clinicians the necessary information on the competence, in terms of physiology and function, of gametes, embryos, and the endometrium towards a targeted infertility treatment, namely, assisted reproduction techniques (ART). Our minireview aims to investigate the current status of the use of metabolomics in assisted reproduction, the potential flaws in its use, and to propose specific solutions towards the improvement of ART outcomes through the use of the intervention. We used published reports assessing the role of metabolomic investigation of the endometrium, oocytes, and embryos in improving clinical outcomes in women undergoing ART. We initially found that there is no evidence to support that fertility outcomes can be improved through metabolomics profiling. In contrast, it may be helpful for understanding and appraising the nutritional environment of oocytes and embryos. The causes include the different infertility populations, the difference between animals and humans, technical limitations, and the great heterogeneity in the variables employed. Suggested steps include the standardization of variables of the method itself, the universal creation of a panel where all biomarkers are stored concerning specific infertile populations with different phenotypes or etiologies, specific bioinformatics contribution, significant computing power for data processing, and importantly, properly conducted trials.


mBio ◽  
2021 ◽  
Author(s):  
Amelia R. Silva-Rohwer ◽  
Kiara Held ◽  
Janelle Sagawa ◽  
Nicolas L. Fernandez ◽  
Christopher M. Waters ◽  
...  

Yersinia pestis , the bacterial agent of bubonic plague, produces a c-di-GMP-dependent biofilm-mediated blockage of the flea vector foregut to facilitate its transmission by flea bite. However, the intricate molecular regulatory processes that underlie c-di-GMP-dependent biofilm formation and, thus, biofilm-mediated blockage in response to the nutritional environment of the flea are largely undefined.


Sign in / Sign up

Export Citation Format

Share Document