Hydrogeochemistry, Elemental Flux, and Quality Assessment of Mine Water in the Pootkee-Balihari Mining Area, Jharia Coalfield, India

2011 ◽  
Vol 30 (3) ◽  
Author(s):  
Abhay Kumar Singh ◽  
Mukesh K. Mahato ◽  
Babita Neogi ◽  
G. C. Mondal ◽  
T. B. Singh
2011 ◽  
Vol 65 (1) ◽  
pp. 49-65 ◽  
Author(s):  
Abhay Kumar Singh ◽  
M. K. Mahato ◽  
B. Neogi ◽  
B. K. Tewary ◽  
A. Sinha

Chemosphere ◽  
2021 ◽  
pp. 131388
Author(s):  
Zheng Zhang ◽  
Guoqing Li ◽  
Xianbo Su ◽  
Xinguo Zhuang ◽  
Lei Wang ◽  
...  

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Qiding Ju ◽  
Yu Liu ◽  
Youbiao Hu ◽  
Yuquan Wang ◽  
Qimeng Liu ◽  
...  

Mining activities interfere into the natural groundwater chemical environment, which may lead to hydrogeochemical changes of aquifers and mine water inrush disasters. The study of hydrogeochemical evolution processes of underground aquifers is helpful to the prevention and control of mine water inrush. The results show that the study area is mainly impacted by four hydrogeochemical processes: dissolution, cation exchange, desulfurization and reduction, and pyrite oxidation. The Cenozoic aquifers are dominated by carbonate dissolution and desulfurization. The Permian aquifers are impacted mainly by cation exchange and sulfate dissolution, followed by pyrite oxidation. The Carboniferous aquifers are mainly impacted by dissolving sulfate, followed by pyrite oxidation and cation exchange. The hydrogeochemical evolution of the aquifers was controlled by mining activities and tectonic changes, and a certain regularity in space. For the Cenozoic aquifers, sulfate dissolution and cation exchange increase from west to east, and desulfurization weakens. For the Permian aquifers, cation exchange and sulfate dissolution are stronger near synclines and faults, pyrite oxidation is enhanced, and desulfurization decreases from the middle to the east of the mining area. For the Carboniferous aquifers, there is a higher dissolution of rock salt, pyrite oxidation, and cation exchange from west to east, and the desulfurization effect weakens.


2020 ◽  
Vol 244 ◽  
pp. 118646 ◽  
Author(s):  
Hongqing Song ◽  
Jianjian Xu ◽  
Jie Fang ◽  
Zhiguo Cao ◽  
Lianzhi Yang ◽  
...  

2012 ◽  
Vol 182-183 ◽  
pp. 644-648
Author(s):  
Wei Feng Yang ◽  
Ding Yi Shen ◽  
Yu Bing Ji ◽  
Yi Wang

Through applying the background values of aquifer derived from fuzzy clustering analysis, a fuzzy comprehensive estimation model was developed for quick recognition of mine water inrush. Based on the hydrological-chemical analysis data of water samples which water bursting sources were known in Liliu mining area, Shanxi province, this paper presented that the hydrological-chemical characters of different aquifer was different, and established a sort of fuzzy comprehensive evaluation models of discriminating coal mine water bursting sources in Liliu mining area. Applied to a production mine, the correct rate of water bursting source judged results by various methods was more than 70%. With the dispersion method and the method extracted from stepwise discrimination analysis to determine the membership degree and Model 3 the type determined by various factors, the correct rate of water bursting source with comprehensive evaluation of combination of two methods was higher respectively 94.5% and 93.3%. The fuzzy system can efficiently and accurately discriminate the resource of water inrush for an unknown sample, and provide the decision basis for the safety production of the coal mine.


2020 ◽  
Vol 12 (18) ◽  
pp. 7782
Author(s):  
Yujun Xu ◽  
Liqiang Ma ◽  
Naseer Muhammad Khan

The problem of water resources damage caused by coal mining has restricted the sustainable development of Yu-Shen mining area. Illustrating the relationship between mining and water resources carrying capacity is of great significance to solve this problem. In this study, the authors proposed an appraisal and prediction model of water resource carrying capacity in the mining area (WRCCMA) based on the analytic hierarchy process (AHP)-fuzzy comprehensive evaluation method. A triple-leveled structure model was developed, and the main influencing factors of the WRCCMA and the membership functions were analyzed. The prediction model was applied to Yubujie colliery to test its validity by investigating the changes of vegetation coverage and the ground deformation of the colliery and its adjacent coal mine before and after mining. Subsequently, we obtained the WRCCMA of the study area and zoning map of different grades of WRCCMA in the mining area by applying this model to the whole Yu-Shen mining area. Furthermore, three countermeasures to maintain the WRCCMA and realize water conservation coal mining (WCCM) were provided to collieries with different WRCCMA grades, including mining methods selection, mine water reutilization, and water-resisting layer reconstruction. Reasonable mining methods and water-resisting layer reconstruction can reduce the development of water conductive fractures and thus prevent groundwater from penetrating into the goaf. Mine water reutilization provides a source of water demand for collieries and families, contributing to the reduction of abstraction of water resources. These three countermeasures can help to maintain the WRCCMA. This paper successfully combines the fuzzy theory with mining engineering and provides theoretical and practical guidance for other mining areas in arid and semi-arid regions of Northwest China.


Sign in / Sign up

Export Citation Format

Share Document