Improvements in Mero River Basin Water Supply Regulation Through Integration of a Mining Pit Lake as a Water Supply Source

2015 ◽  
Vol 35 (3) ◽  
pp. 389-397 ◽  
Author(s):  
R. Juncosa ◽  
J. Delgado ◽  
F. Padilla ◽  
P. Rdgz-Vellando ◽  
H. Hernández
2019 ◽  
Vol 11 (7) ◽  
pp. 2044 ◽  
Author(s):  
Jing Tian ◽  
Dedi Liu ◽  
Shenglian Guo ◽  
Zhengke Pan ◽  
Xingjun Hong

Inter-basin water transfer project is an effective engineering countermeasure to alleviate the pressure of water supply in water-deficient areas and balance the uneven distribution of water resources. To assess the impacts of inter-basin water transfer projects on optimal water resources allocation, an integrated water resources management framework is proposed, and is applied to the middle and lower reaches of the Hanjiang River Basin in China. Firstly, future water demands are analyzed as inputs. Then, a multi-objective water resources allocation model is formulated mitigating the negative impacts of water transfer projects on downstream water quantity and quality by using the non-dominated sorting genetic algorithm-II (NSGA-II). Finally, the indicators of water supply reliability, vulnerability and resilience are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: (1) the reliability and resilience of the water donor system will be gradually reduced while the vulnerability will be increased with the expansion of water transfer projects and the increase of water demand, (2) water supply risk is likely to increase in all zones (because zones at the boundary cannot obtain sufficient water due to limitations of local inflow and reservoir operation, while the amount of water available in the zones along the mainstream river is directly decreased by the water transfer projects), (3) more water supply measures and compensation measures will need to be implemented in the water donor areas. The framework proposed in this study to evaluate the comprehensive impact of inter-basin water transfer projects is conducive to water resources management.


FLORESTA ◽  
2021 ◽  
Vol 51 (4) ◽  
pp. 810
Author(s):  
Amanda Köche Marcon ◽  
Christel Lingnau ◽  
Franklin Galvão

This research aimed to compare two methods of determining the environmental fragility of a vital source in the region of Curitiba, Paraná, the Iraí river basin. The determination of the environmental fragility was carried out based on the integration of geological, pedological, geomorphological characteristics and land use, using the emergent fragility and Natural Vulnerability to Soil Loss methods. Most of the Iraí River basin was classified as weak to intermediate environmental fragility by both methods. The methods showed equal fragility ratings in 74% of the basin area. The greatest fragilities were found in areas with recent sedimentation, soils with high instability, slopes higher than 12% and land use areas with low protective potential. The emergent fragility method highlighted the effect of land use, accentuating the fragility of the most vulnerable classes. In contrast, the Natural Vulnerability to Soil Loss method attenuated this land-use effect, softening the vulnerability. The fragility maps indicated that different results might be obtained, especially on the threshold between fragility classes and polygons where land-use makes the environment more vulnerable. Thus, the method selection for determining environmental fragility depends on the relevance necessary for land-use. The emergent fragility method is advantageous for showing the fragility in areas mainly occupied by classes of land use of high vulnerability.


Hydrology ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Giuseppe Formetta ◽  
Glenn Tootle ◽  
Giacomo Bertoldi

The Adige River Basin (ARB) provides a vital water supply source for varying demands including agriculture (wine production), energy (hydropower) and municipal water supply. Given the importance of this river system, information about past (paleo) drought and pluvial (wet) periods would quantity risk to water managers and planners. Annual streamflow data were obtained for four gauges that were spatially located within the upper ARB. The Old World Drought Atlas (OWDA) provides an annual June–July–August (JJA) self-calibrating Palmer Drought Severity Index (scPDSI) derived from 106 tree-ring chronologies for 5414 grid points across Europe from 0 to 2012 AD. In lieu of tree-ring chronologies, the OWDA dataset was used as a proxy to reconstruct both individual gauge and ARB regional streamflow from 0 to 2012. Principal component analysis (PCA) was applied to the four ARB streamflow gauges to generate one representative vector of regional streamflow. This regional streamflow vector was highly correlated with the four individual gauges, as coefficient of determination (R2) values ranged from 85% to 96%. Prescreening methods included correlating annual streamflow and scPDSI cells (within a 450 km radius) in which significant (p ≤ 0.01 or 99% significance) scPDSI cells were identified. The significant scPDSI cells were then evaluated for temporal stability to ensure practical and reliable reconstructions. Statistically significant and temporally stable scPDSI cells were used as predictors (independent variables) to reconstruct streamflow (predictand or dependent variable) for both individual gauges and at the regional scale. This resulted in highly skillful reconstructions of upper ARB streamflow from 0 to 2012 AD. Multiple drought and pluvial periods were identified in the paleo record that exceed those observed in the recent, historic record. Moreover, this study concurred with streamflow reconstructions in nearby European watersheds.


2014 ◽  
Vol 25 (1-2) ◽  
pp. 61-68 ◽  
Author(s):  
V. I. Monchenko ◽  
L. P. Gaponova ◽  
V. R. Alekseev

Crossbreeding experiments were used to estimate cryptic species in water bodies of Ukraine and Russia because the most useful criterion in species independence is reproductive isolation. The problem of cryptic species in the genus Eucyclops was examined using interpopulation crosses of populations collected from Baltic Sea basin (pond of Strelka river basin) and Black Sea basin (water-reservoires of Dnieper, Dniester and Danube rivers basins). The results of reciprocal crosses in Eucyclops serrulatus-group are shown that E. serrulatus from different populations but from water bodies belonging to the same river basin crossed each others successfully. The interpopulation crosses of E. serrulatus populations collected from different river basins (Dnipro, Danube and Dniester river basins) were sterile. In this group of experiments we assigned evidence of sterility to four categories: 1) incomplete copulation or absence of copulation; 2) nonviable eggs; 3) absence of egg membranes or egg sacs 4) empty egg membranes. These crossbreeding studies suggest the presence of cryptic species in the E. serrulatus inhabiting ecologically different populations in many parts of its range. The same crossbreeding experiments were carries out between Eucyclops serrulatus and morphological similar species – Eucyclops macruroides from Baltic and Black Sea basins. The reciprocal crossings between these two species were sterile. Thus taxonomic heterogeneity among species of genus Eucyclops lower in E. macruroides than in E. serrulatus. The interpopulation crosses of E. macruroides populations collected from distant part of range were fertile. These crossbreeding studies suggest that E. macruroides species complex was evaluated as more stable than E. serrulatus species complex.


Sign in / Sign up

Export Citation Format

Share Document