Upper layer circulation, hydrography, and biological response of the Andaman waters during winter monsoon based on in situ and satellite observations

2018 ◽  
Vol 68 (7) ◽  
pp. 801-815 ◽  
Author(s):  
Salini Thaliyakkattil Chandran ◽  
Smitha Bal Raj ◽  
Sajeev Ravindran ◽  
Sanjeevan Vellorkirakathil Narayana
2016 ◽  
Vol 97 (6) ◽  
pp. 1033-1056 ◽  
Author(s):  
Taneil Uttal ◽  
Sandra Starkweather ◽  
James R. Drummond ◽  
Timo Vihma ◽  
Alexander P. Makshtas ◽  
...  

Abstract International Arctic Systems for Observing the Atmosphere (IASOA) activities and partnerships were initiated as a part of the 2007–09 International Polar Year (IPY) and are expected to continue for many decades as a legacy program. The IASOA focus is on coordinating intensive measurements of the Arctic atmosphere collected in the United States, Canada, Russia, Norway, Finland, and Greenland to create synthesis science that leads to an understanding of why and not just how the Arctic atmosphere is evolving. The IASOA premise is that there are limitations with Arctic modeling and satellite observations that can only be addressed with boots-on-the-ground, in situ observations and that the potential of combining individual station and network measurements into an integrated observing system is tremendous. The IASOA vision is that by further integrating with other network observing programs focusing on hydrology, glaciology, oceanography, terrestrial, and biological systems it will be possible to understand the mechanisms of the entire Arctic system, perhaps well enough for humans to mitigate undesirable variations and adapt to inevitable change.


2021 ◽  
Author(s):  
Enrico Dammers ◽  
Mark Shephard ◽  
Evan White ◽  
Debora Griffin ◽  
Evan Chow ◽  
...  

<p>While ammonia (NH3) at its current levels is known to be a hazard to environmental and human health, the atmospheric budget is still quite uncertain. This can largely be attributed to the short lifetime of ammonia in combination with an overall lack of (dense) in-situ measurement networks. The capability to observe ammonia distributions with satellites has opened new ways to study the atmospheric ammonia budget. Previous studies have demonstrated the capability of current ammonia satellite sensors to resolve emissions from point like sources, biomass burning, and constraining emission sources at a regional level with methods involving the use of air quality models.</p><p>In this study, we present the first spatially resolved ammonia emission estimates across the globe using a consistent methodology based solely on ammonia satellite observations from the Cross-track Infrared Sounder (CrIS) instrument and ECMWF ERA5 wind fields. The concept was evaluated for North Western Europe and demonstrated the ability to constrain annual emissions at county- to provincial-levels with most deviations within the bounds found in the error analysis. Furthermore, we show that for some regions the spatial patterns found in the satellite observations are consistent while others do not match the current inventories. Finally, the results indicate that the absolute emission levels tend to be underestimated for parts of the globe.</p>


2021 ◽  
Vol 18 ◽  
Author(s):  
Shihui Liu ◽  
Junchao Zhi ◽  
Shijie Li ◽  
Zhuoyue Song ◽  
Tao Gong ◽  
...  

: In the past few decades, drug-eluting stents have made significant contributions to the treatment of coronary heart disease. However, due to the delayed healing of endothelial injuries caused by antiproliferative drugs and insufficient biocompatibility of vascular stent materials, late in-stent thrombosis and restenosis remain major challenges. Surface modification of cardiovascular materials to construct biological functional layer that can regulate the behavior of blood and vascular cells is an effective way to improve the clinical performance of vascular stents. This paper reviewed the common methods of surface bio-functional modification of cardiovascular materials, and especially proposed that take the advantage of the new concept of precision medicine, as well as the precise and orderly regulation properties of cardiovascular disease-related gene fragments on vascular biological response behavior, the construction of gene-eluting stents which can in-situ regulate vascular intimal repair at the molecular and genetic level will become an important research direction in the future.


2020 ◽  
Vol 199 ◽  
pp. 105191
Author(s):  
Sreenivas Pentakota ◽  
Seshagiri Rao Kolusu ◽  
Sagar V. Gade ◽  
K. Srinivasu ◽  
J Prithvi Raj

2020 ◽  
Vol 12 (21) ◽  
pp. 3583
Author(s):  
Hui Yang ◽  
Gefei Feng ◽  
Ru Xiang ◽  
Yunjing Xu ◽  
Yong Qin ◽  
...  

Carbon dioxide (CO2) is a significant atmospheric greenhouse gas and its concentrations can be observed by in situ surface stations, aircraft flights and satellite sensors. This paper investigated the ability of the CO2 satellite observations to monitor, analyze and predict the horizontal and vertical distribution of atmospheric CO2 concentration at global scales. CO2 observations retrieved by an Atmospheric Infrared Sounder (AIRS) were inter-compared with the Global Atmosphere Watch Program (GAW) and HIAPER Pole-to-Pole Observations (HIPPOs), with reference to the measurements obtained using high-resolution ground-based Fourier Transform Spectrometers (FTS) in the Total Carbon Column Observing Network (TCCON) from near-surface level to the mid-to-high troposphere. After vertically integrating the AIRS-retrieved values with the column averaging kernels of TCCON measurements, the AIRS observations are spatio-temporally compared with HIPPO-integrated profiles in the mid-to-high troposphere. Five selected GAW stations are used for comparisons with TCCON sites near the surface of the Earth. The results of AIRS, TCCON (5–6 km), GAW and TCCON (1 km) CO2 measurements from 2007 to 2013 are compared, analyzed and discussed at their respective altitudes. The outcomes indicate that the difference of about 3.0 ppmv between AIRS and GAW or other highly accurate in situ surface measurements is mainly due to the different vertical altitudes, rather than the errors in the AIRS. The study reported here also explores the potential of AIRS satellite observations for analyzing the spatial distribution and seasonal variation of CO2 concentration at global scales.


2015 ◽  
Vol 8 (11) ◽  
pp. 3747-3763 ◽  
Author(s):  
E. Andersson ◽  
M. Kahnert ◽  
A. Devasthale

Abstract. Hemispheric transport of air pollutants can have a significant impact on regional air quality, as well as on the effect of air pollutants on regional climate. An accurate representation of hemispheric transport in regional chemical transport models (CTMs) depends on the specification of the lateral boundary conditions (LBCs). This study focuses on the methodology for evaluating LBCs of two moderately long-lived trace gases, carbon monoxide (CO) and ozone (O3), for the European model domain and over a 7-year period, 2006–2012. The method is based on combining the use of satellite observations at the lateral boundary with the use of both satellite and in situ ground observations within the model domain. The LBCs are generated by the global European Monitoring and Evaluation Programme Meteorological Synthesizing Centre – West (EMEP MSC-W) model; they are evaluated at the lateral boundaries by comparison with satellite observations of the Terra-MOPITT (Measurements Of Pollution In The Troposphere) sensor (CO) and the Aura-OMI (Ozone Monitoring Instrument) sensor (O3). The LBCs from the global model lie well within the satellite uncertainties for both CO and O3. The biases increase below 700 hPa for both species. However, the satellite retrievals below this height are strongly influenced by the a priori data; hence, they are less reliable than at, e.g. 500 hPa. CO is, on average, underestimated by the global model, while O3 tends to be overestimated during winter, and underestimated during summer. A regional CTM is run with (a) the validated monthly climatological LBCs from the global model; (b) dynamical LBCs from the global model; and (c) constant LBCs based on in situ ground observations near the domain boundary. The results are validated against independent satellite retrievals from the Aqua-AIRS (Atmospheric InfraRed Sounder) sensor at 500 hPa, and against in situ ground observations from the Global Atmospheric Watch (GAW) network. It is found that (i) the use of LBCs from the global model gives reliable in-domain results for O3 and CO at 500 hPa. Taking AIRS retrievals as a reference, the use of these LBCs substantially improves spatial pattern correlations in the free troposphere as compared to results obtained with fixed LBCs based on ground observations. Also, the magnitude of the bias is reduced by the new LBCs for both trace gases. This demonstrates that the validation methodology based on using satellite observations at the domain boundary is sufficiently robust in the free troposphere. (ii) The impact of the LBCs on ground concentrations is significant only at locations in close proximity to the domain boundary. As the satellite data near the ground mainly reflect the a priori estimate used in the retrieval procedure, they are of little use for evaluating the effect of LBCs on ground concentrations. Rather, the evaluation of ground-level concentrations needs to rely on in situ ground observations. (iii) The improvements of dynamic over climatological LBCs become most apparent when using accumulated ozone over threshold 40 ppb (AOT40) as a metric. Also, when focusing on ground observations taken near the inflow boundary of the model domain, one finds that the use of dynamical LBCs yields a more accurate representation of the seasonal variation, as well as of the variability of the trace gas concentrations on shorter timescales.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0222584 ◽  
Author(s):  
Anouck Ody ◽  
Thierry Thibaut ◽  
Léo Berline ◽  
Thomas Changeux ◽  
Jean-Michel André ◽  
...  

2019 ◽  
Vol 55 (11) ◽  
pp. 10026-10036 ◽  
Author(s):  
Daniel McGrath ◽  
Ryan Webb ◽  
David Shean ◽  
Randall Bonnell ◽  
Hans‐Peter Marshall ◽  
...  

Geoderma ◽  
2020 ◽  
Vol 378 ◽  
pp. 114617
Author(s):  
Chenyang Xu ◽  
John J. Qu ◽  
Xianjun Hao ◽  
Zhiliang Zhu ◽  
Laurel Gutenberg

Sign in / Sign up

Export Citation Format

Share Document