Efficient parallel reasoning on fuzzy goal models for run time requirements verification

2016 ◽  
Vol 17 (4) ◽  
pp. 1339-1364
Author(s):  
George Chatzikonstantinou ◽  
Kostas Kontogiannis
2016 ◽  
Vol 58 (6) ◽  
Author(s):  
Stefan Wildermann ◽  
Michael Bader ◽  
Lars Bauer ◽  
Marvin Damschen ◽  
Dirk Gabriel ◽  
...  

AbstractMulti-Processor Systems-on-a-Chip (MPSoCs) provide sufficient computing power for many applications in scientific as well as embedded applications. Unfortunately, when real-time requirements need to be guaranteed, applications suffer from the interference with other applications, uncertainty of dynamic workload and state of the hardware. Composable application/architecture design and timing analysis is therefore a must for guaranteeing real-time applications to satisfy their timing requirements independent from dynamic workload. Here, Invasive Computing is used as the key enabler for compositional timing analysis on MPSoCs, as it provides the required isolation of resources allocated to each application. On the basis of this paradigm, this work proposes a hybrid application mapping methodology that combines design-time analysis of application mappings with run-time management. Design space exploration delivers several resource reservation configurations with verified real-time guarantees for individual applications. These timing properties can then be guaranteed at run-time, as long as dynamic resource allocations comply with the offline analyzed resource configurations.This article describes our methodology and presents programming, optimization, analysis, and hardware techniques for enforcing timing predictability. A case study illustrates the timing-predictable management of real-time computer vision applications in dynamic robot system scenarios.


2012 ◽  
Vol 15 (7) ◽  
pp. A469
Author(s):  
V. Foos ◽  
P. McEwan ◽  
A. Lloyd ◽  
J.L. Palmer ◽  
M. Lamotte ◽  
...  

VASA ◽  
2019 ◽  
Vol 48 (6) ◽  
pp. 516-522 ◽  
Author(s):  
Verena Mayr ◽  
Mirko Hirschl ◽  
Peter Klein-Weigel ◽  
Luka Girardi ◽  
Michael Kundi

Summary. Background: For diagnosis of peripheral arterial occlusive disease (PAD), a Doppler-based ankle-brachial-index (dABI) is recommended as the first non-invasive measurement. Due to limitations of dABI, oscillometry might be used as an alternative. The aim of our study was to investigate whether a semi-automatic, four-point oscillometric device provides comparable diagnostic accuracy. Furthermore, time requirements and patient preferences were evaluated. Patients and methods: 286 patients were recruited for the study; 140 without and 146 with PAD. The Doppler-based (dABI) and oscillometric (oABI and pulse wave index – PWI) measurements were performed on the same day in a randomized cross-over design. Specificity and sensitivity against verified PAD diagnosis were computed and compared by McNemar tests. ROC analyses were performed and areas under the curve were compared by non-parametric methods. Results: oABI had significantly lower sensitivity (65.8%, 95% CI: 59.2%–71.9%) compared to dABI (87.3%, CI: 81.9–91.3%) but significantly higher specificity (79.7%, 74.7–83.9% vs. 67.0%, 61.3–72.2%). PWI had a comparable sensitivity to dABI. The combination of oABI and PWI had the highest sensitivity (88.8%, 85.7–91.4%). ROC analysis revealed that PWI had the largest area under the curve, but no significant differences between oABI and dABI were observed. Time requirement for oABI was significantly shorter by about 5 min and significantly more patients would prefer oABI for future testing. Conclusions: Semi-automatic oABI measurements using the AngER-device provide comparable diagnostic results to the conventional Doppler method while PWI performed best. The time saved by oscillometry could be important, especially in high volume centers and epidemiologic studies.


2003 ◽  
Author(s):  
E. Lee ◽  
C. Feigley ◽  
J. Hussey ◽  
J. Khan ◽  
M. Ahmed

Sign in / Sign up

Export Citation Format

Share Document