Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study

2016 ◽  
Vol 29 (3) ◽  
pp. 389-398 ◽  
Author(s):  
Bixia Chen ◽  
Tobias Schoemberg ◽  
Oliver Kraff ◽  
Philipp Dammann ◽  
Andreas K. Bitz ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Cezary Grochowski ◽  
Kamil Jonak ◽  
Marcin Maciejewski ◽  
Andrzej Stępniewski ◽  
Mansur Rahnama-Hezavah

Purpose: The aim of this study was to assess the volumetry of the hippocampus in the Leber’s hereditary optic neuropathy (LHON) of blind patients. Methods: A total of 25 patients with LHON were randomly included into the study from the national health database. A total of 15 patients were selected according to the inclusion criteria. The submillimeter segmentation of the hippocampus was based on three-dimensional spoiled gradient recalled acquisition in steady state (3D-SPGR) BRAVO 7T magnetic resonance imaging (MRI) protocol. Results: Statistical analysis revealed that compared to healthy controls (HC), LHON subjects had multiple significant differences only in the right hippocampus, including a significantly higher volume of hippocampal tail (p = 0.009), subiculum body (p = 0.018), CA1 body (p = 0.002), hippocampal fissure (p = 0.046), molecular layer hippocampus (HP) body (p = 0.014), CA3 body (p = 0.006), Granule Cell (GC) and Molecular Layer (ML) of the Dentate Gyrus (DG)–GC ML DG body (p = 0.003), CA4 body (p = 0.001), whole hippocampal body (p = 0.018), and the whole hippocampus volume (p = 0.023). Discussion: The ultra-high-field magnetic resonance imaging allowed hippocampus quality visualization and analysis, serving as a powerful in vivo diagnostic tool in the diagnostic process and LHON disease course assessment. The study confirmed previous reports regarding volumetry of hippocampus in blind individuals.


Author(s):  
JC Lau ◽  
J DeKraker ◽  
KW MacDougall ◽  
H Joswig ◽  
AG Parrent ◽  
...  

Background: The hippocampus can be divided longitudinally into the head, body, and tail; and unfolded medial-to-laterally into the subiculum, cornu ammonis (CA) sectors, and the dentate gyrus. Ultra-high field (≥ 7 Tesla; 7T) magnetic resonance imaging (MRI) enables submillimetric visualization of these hippocampal substructures which could be valuable for surgical targeting. Here, we assess the feasibility of using 7T MRI in conjunction with a novel computational unfolding method for image-based stereotactic targeting of hippocampal substructures. Methods: 53 patients with drug-resistant epilepsy were identified undergoing first-time implantation of the hippocampus. An image processing pipeline was created for computationally transforming post-operative electrode contact locations into our hippocampal coordinate system. Results: Of 178 implanted hippocampal electrodes (88 left; 49.4%), 25 (14.0%) were predominantly in the subiculum, 85 (47.8%) were in CA1, 23 (12.9%) were in CA2, 18 (10.1%) were in CA3/CA4, and 27 (15.2%) were in dentate gyrus. Along the longitudinal axis, hippocampal electrodes were most commonly implanted in the body (92; 51.7%) followed by the head (86; 48.3%). Conclusions: 7T MRI enables high-resolution anatomical imaging on the submillimeter scale in in vivo subjects. Here, we demonstrate the utility of 7T imaging for identifying the relative location of SEEG electrode implantations within hippocampal substructures for the invasive investigation of epilepsy.


2021 ◽  
Vol 11 ◽  
pp. 65
Author(s):  
Kenichi Yamada ◽  
Junichi Yoshimura ◽  
Masaki Watanabe ◽  
Kiyotaka Suzuki

Ultra-high field magnetic resonance imaging (MRI) has been introduced for use in pediatric developmental neurology. While higher magnetic fields have certain advantages, optimized techniques with specific considerations are required to ensure rational and safe use in children and those with pediatric neurological disorders (PNDs). Here, we summarize our initial experience with clinical translational studies that utilized 7 tesla (T)-MRI in the fields of developmental neurology. T2-reversed images and three-dimensional anisotropy contrast imaging enabled the depiction of targeted pathological brain structures with better spatial resolution. Diffusion imaging and susceptibility-weighted imaging enabled visualization of intracortical, subcortical, and intratumoral microstructures in vivo within highly limited scan times appropriate for patients with PNDs. 7T-MRI appears to have significant potential to enhance the depiction of the structural and functional properties of the brain, particularly those associated with atypical brain development.


2013 ◽  
Vol 20 (1) ◽  
pp. 64-71 ◽  
Author(s):  
María I Gaitán ◽  
Pietro Maggi ◽  
Jillian Wohler ◽  
Emily Leibovitch ◽  
Pascal Sati ◽  
...  

Background Magnetic resonance imaging (MRI) can provide in vivo assessment of tissue damage, allowing evaluation of multiple sclerosis (MS) lesion evolution over time – a perspective not obtainable with postmortem histopathology. Relapsing–remitting experimental autoimmune encephalomyelitis (EAE) is an experimental model of MS that can be induced in the common marmoset, a small new world primate, and that causes perivenular white matter (WM) lesions similar to those observed in MS. Methods Brain lesion development and evolution were studied in vivo and postmortem in four marmosets with EAE through serial T2- and T2*-weighted scans at 7-tesla. Supratentorial WM lesions were identified and characterized. Results Of 97 lesions observed, 86 (88%) were clearly perivenular, and 62 (72%) developed around veins that were visible even prior to EAE induction. The perivenular configuration was confirmed by postmortem histopathology. Most affected veins, and their related perivascular Virchow-Robin spaces, passed into the subarachnoid space rather than the ventricles. Conclusion As in human MS, the intimate association between small veins and EAE lesions in the marmoset can be studied with serial in vivo MRI. This further strengthens the usefulness of this model for understanding the process of perivenular lesion development and accompanying tissue destruction in MS.


2014 ◽  
Vol 24 (8) ◽  
pp. 1950-1958 ◽  
Author(s):  
E. K. Vos ◽  
M. W. Lagemaat ◽  
J. O. Barentsz ◽  
J. J. Fütterer ◽  
P. Zámecnik ◽  
...  

Medicina ◽  
2008 ◽  
Vol 44 (2) ◽  
pp. 126
Author(s):  
Liuda Janauskaitë ◽  
Justina Kaèerauskienë ◽  
Ugnë Jaðinskaitë ◽  
Vytautas Gedrimas ◽  
Rimvydas Stropus

Objective. Magnetic resonance imaging method opened up the possibility for in vivo examination of the anatomy of human brain. For this reason it is interesting and relevant to compare the knowledge accumulated over a number of years during the examination of the composition of dead brain to that obtained from magnetic resonance images. The aim of this study was to determine and compare the thickness of cerebral cortex in human of different age and sex, measured in different sites of the hemispheres when applying anatomical mesoscopic imaging and magnetic resonance imaging. Material and methods. The thickness of cerebral cortex was measured in symmetrical Brodmann’s areas of both hemispheres. The anatomical mesoscopic imaging technique was used for the examination of 2×2-cm cortex samples obtained during autopsy and fixed for 4 weeks in 10% paraformaldehyde. In these samples, cortex thickness was measured in sections perpendicular to the convolution, using an operative microscope, in a mesoscopic image at ×16 magnification and with an accuracy of 0.01 mm. Using cerebral magnetic resonance imaging, the thickness of cerebral cortex in live subjects was measured on T1-weighted images of patients examined at the Clinic of Radiology, Kaunas University of Medicine Hospital. The measured cortical field image was magnified to the smallest element of digital image – the pixel – and measured with an accuracy of 0.01 mm. Each of the two techniques was applied for the examination of 20 men and women who were divided into age groups of 20–60 years (n=10) and older than 60 years (n=10). Results and conclusions. Both examination methods yielded a statistically significant difference in the thickness of cerebral cortex between Brodmann’s areas 1, 4, and 19. No significant difference in cortex thickness was found between different age and sex groups; however, the findings showed that the difference in cortex thickness between the different age male groups was 4.6% and female – 1.6%. No significant difference using different techniques was found, but the cortex thickness in the fixed samples was reduced by 0.5 cm on average.


2018 ◽  
Vol 2018 ◽  
pp. 1-4 ◽  
Author(s):  
Dirk Schröder ◽  
Gloria Grupe ◽  
Grit Rademacher ◽  
Sven Mutze ◽  
Arneborg Ernst ◽  
...  

Objective. Cerebral magnetic resonance imaging with the magnet of the cochlear implant receiver/stimulator in place causes artifacts and hinders evaluation of intracerebral structures. The aim of this study was to evaluate the internal auditory canal and the labyrinth in a 1.5T MRI with the magnet in place. Study Design. Observational study. Setting. Tertiary referral center. Subjects and Methods. The receiver/stimulator unit was placed and fixed onto the head of three volunteers at three different angles to the nasion–outer ear canal (90°–160°) and at three different distances from the outer ear canal (5–9 cm). T1 and T2 weighted sequences were conducted for each position. Results. Excellent visibility of the internal auditory canal and the labyrinth was seen in the T2 weighted sequences with 9 cm between the magnet and the outer ear canal at every nasion–outer ear canal angle. T1 sequences showed poorer visibility of the internal auditory canal and the labyrinth. Conclusion. Aftercare and visibility of intracerebral structures after cochlear implantation is becoming more important as cochlear implant indications are widened worldwide. With a distance of at least 9 cm from the outer ear canal the artifact induced by the magnet allows evaluation of the labyrinth and the internal auditory canal.


2008 ◽  
Vol 64 (6) ◽  
pp. 707-713 ◽  
Author(s):  
Kathryn E. Hammond ◽  
Meredith Metcalf ◽  
Lucas Carvajal ◽  
Darin T. Okuda ◽  
Radhika Srinivasan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document