scholarly journals Thickness of cerebral cortex measured using anatomical mesoscopic imaging and magnetic resonance imaging

Medicina ◽  
2008 ◽  
Vol 44 (2) ◽  
pp. 126
Author(s):  
Liuda Janauskaitë ◽  
Justina Kaèerauskienë ◽  
Ugnë Jaðinskaitë ◽  
Vytautas Gedrimas ◽  
Rimvydas Stropus

Objective. Magnetic resonance imaging method opened up the possibility for in vivo examination of the anatomy of human brain. For this reason it is interesting and relevant to compare the knowledge accumulated over a number of years during the examination of the composition of dead brain to that obtained from magnetic resonance images. The aim of this study was to determine and compare the thickness of cerebral cortex in human of different age and sex, measured in different sites of the hemispheres when applying anatomical mesoscopic imaging and magnetic resonance imaging. Material and methods. The thickness of cerebral cortex was measured in symmetrical Brodmann’s areas of both hemispheres. The anatomical mesoscopic imaging technique was used for the examination of 2×2-cm cortex samples obtained during autopsy and fixed for 4 weeks in 10% paraformaldehyde. In these samples, cortex thickness was measured in sections perpendicular to the convolution, using an operative microscope, in a mesoscopic image at ×16 magnification and with an accuracy of 0.01 mm. Using cerebral magnetic resonance imaging, the thickness of cerebral cortex in live subjects was measured on T1-weighted images of patients examined at the Clinic of Radiology, Kaunas University of Medicine Hospital. The measured cortical field image was magnified to the smallest element of digital image – the pixel – and measured with an accuracy of 0.01 mm. Each of the two techniques was applied for the examination of 20 men and women who were divided into age groups of 20–60 years (n=10) and older than 60 years (n=10). Results and conclusions. Both examination methods yielded a statistically significant difference in the thickness of cerebral cortex between Brodmann’s areas 1, 4, and 19. No significant difference in cortex thickness was found between different age and sex groups; however, the findings showed that the difference in cortex thickness between the different age male groups was 4.6% and female – 1.6%. No significant difference using different techniques was found, but the cortex thickness in the fixed samples was reduced by 0.5 cm on average.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jae Heon Kim ◽  
Hong J. Lee ◽  
Yun Seob Song

A reliablein vivoimaging method to localize transplanted cells and monitor their viability would enable a systematic investigation of cell therapy. Most stem cell transplantation studies have used immunohistological staining, which does not provide information about the migration of transplanted cellsin vivoin the same host. Molecular imaging visualizes targeted cells in a living host, which enables determining the biological processes occurring in transplanted stem cells. Molecular imaging with labeled nanoparticles provides the opportunity to monitor transplanted cells noninvasively without sacrifice and to repeatedly evaluate them. Among several molecular imaging techniques, magnetic resonance imaging (MRI) provides high resolution and sensitivity of transplanted cells. MRI is a powerful noninvasive imaging modality with excellent image resolution for studying cellular dynamics. Several types of nanoparticles including superparamagnetic iron oxide nanoparticles and magnetic nanoparticles have been used to magnetically label stem cells and monitor viability by MRI in the urologic field. This review focuses on the current role and limitations of MRI with labeled nanoparticles for tracking transplanted stem cells in urology.


2001 ◽  
Vol 49 (3) ◽  
pp. 275-284
Author(s):  
Zs. Petrási ◽  
R. Romvári ◽  
G. Bajzik ◽  
B. Fenyves ◽  
I. Repa ◽  
...  

A dynamic magnetic resonance imaging (MRI) method was developed for in vivo examination of the pig heart. Measurements were carried out on 15 meat-type pigs of different liveweight using a 1.5 T equipment. Inhalation anaesthesia was applied, then data acquisition was synchronised by ECG gating. Depending on the heart rate and heart size, in each case 8 to 10 slices and in each slice 8 to 14 phases were acquired prospectively according to one heart cycle. During the post-processing of the images the left and the right ventricular volumes were determined. The values measured at 106 kg liveweight are 2.5 times higher than those obtained at 22 kg, while the ejection fractions are equal. The calculated cardiac output values were 3.5 l (22 kg, 132 beats/min.), and 6.0 l (106 kg, 91 beats/min.), respectively. After measuring the wall thickness, the contraction values were also determined for the septum (70%), and for the anterior (61%), posterior (41%) and lateral (54%) walls of the left ventricle. Three-dimensional animated models of the ventricles were constructed. Based on the investigations performed, the preconditioning, the anaesthetic procedure, the specific details of ECG measurement and the correct MR imaging technique were worked out.


Author(s):  
N.D. Scollan ◽  
L.J. Caston ◽  
Z. Liu ◽  
A.K. Zubair ◽  
S. Leeson ◽  
...  

In studies of animal growth it is often necessary to assess whole body composition or organ size prior to and during the course of a particular treatment. Nuclear Magnetic Resonance (NMR) offers the possibility to achieve these measurements on the same animal and in a non-invasive fashion. The use of NMR in attaining body images, referred to as Magnetic Resonance Imaging (MRI), has developed as the imaging method of choice for humans, due to its excellent soft tissue contrast and use of nonionizing radiation. The use of NMR in animal studies has been limited, which is probably related to the availability of suitable facilities and the cost of using them. However, several research groups have applied it to determining fat and water content of tissue samples and intact animals (Mitchell et al., 1991; Scollan et al., 1993). The aim of this study was to evaluate the use of MRI to determine the size (volume) and shape of the Pectoralis muscle (Pectoralis major and minor) in broiler chickens, non-invasively and in vivo.


2013 ◽  
Vol 73 (2) ◽  
pp. ons132-ons140 ◽  
Author(s):  
Tomasz Matys ◽  
Avril Horsburgh ◽  
Ramez W. Kirollos ◽  
Tarik F. Massoud

Abstract BACKGROUND: The aqueduct of Sylvius (AqSylv) is a structure of increasing importance in neuroendoscopic procedures. However, there is currently no clear and adequate description of the normal anatomy of the AqSylv. OBJECTIVE: To study in detail hitherto unavailable normal magnetic resonance imaging morphometry and anatomic variants of the AqSylv. METHODS: We retrospectively studied normal midsagittal T1-weighted 3-T magnetic resonance images in 100 patients. We measured widths of the AqSylv pars anterior, ampulla, and pars posterior; its narrowest point; and its length. We recorded angulation of the AqSylv relative to the third ventricle as multiple deviations of the long axis of the AqSylv from the Talairach bicommissural line. We statistically determined age- and sex-related changes in AqSylv morphometry using the Pearson correlation coefficient. We measured angulation of the AqSylv relative to the fourth ventricle and correlated this to the cervicomedullary angle (a surrogate for head position). RESULTS: Patients were 13 to 83 years of age (45% male, 55% female). Mean morphometrics were as follows: pars anterior width, 1.1 mm; ampulla width, 1.2 mm; pars posterior width, 1.4 mm; length, 14.1 mm; narrowest point, 0.9 mm; and angulation in relation to the third and fourth ventricles, 26° and 18°, respectively. Age correlated positively with width and negatively with length of the AqSylv. There was no correlation between AqSylv alignment relative to the foramen magnum and the cervicomedullary angle. CONCLUSION: Normative dimensions of the AqSylv in vivo are at variance with published cadaveric morphometrics. The AqSylv widens and shortens with cerebral involution. Awareness of these normal morphometrics is highly useful when stent placement is an option during aqueductoplasty. Reported data are valuable in guiding neuroendoscopic management of hydrocephalus and aqueductal stenosis.


2012 ◽  
Vol 8 (4S_Part_4) ◽  
pp. P153-P154
Author(s):  
Kerrie Hayes ◽  
Richard Buist ◽  
Trevor Vincent ◽  
Yanbo Zhang ◽  
Jonathan Thiessen ◽  
...  

2016 ◽  
Vol 49 (3) ◽  
pp. 158-164
Author(s):  
Tiago da Silva Jornada ◽  
Camila Hitomi Murata ◽  
Regina Bitelli Medeiros

Abstract Objective: To study the influence that the scan percentage tool used in partial k-space acquisition has on the quality of images obtained with magnetic resonance imaging equipment. Materials and Methods: A Philips 1.5 T magnetic resonance imaging scanner was used in order to obtain phantom images for quality control tests and images of the knee of an adult male. Results: There were no significant variations in the uniformity and signal-to-noise ratios with the phantom images. However, analysis of the high-contrast spatial resolution revealed significant degradation when scan percentages of 70% and 85% were used in the acquisition of T1- and T2-weighted images, respectively. There was significant degradation when a scan percentage of 25% was used in T1- and T2-weighted in vivo images (p ≤ 0.01 for both). Conclusion: The use of tools that limit the k-space is not recommended without knowledge of their effect on image quality.


2016 ◽  
Vol 49 (3) ◽  
pp. 165-169
Author(s):  
Camila Pessoa Sales ◽  
Heloisa de Andrade Carvalho ◽  
Khallil Chaim Taverna ◽  
Bruno Fraccini Pastorello ◽  
Rodrigo Augusto Rubo ◽  
...  

Abstract Objective: To identify a contrast material that could be used as a dummy marker for magnetic resonance imaging. Materials and Methods: Magnetic resonance images were acquired with six different catheter-filling materials-water, glucose 50%, saline, olive oil, glycerin, and copper sulfate (CuSO4) water solution (2.08 g/L)-inserted into compatible computed tomography/magnetic resonance imaging ring applicators placed in a phantom made of gelatin and CuSO4. The best contrast media were tested in four patients with the applicators in place. Results: In T2-weighted sequences, the best contrast was achieved with the CuSO4-filled catheters, followed by saline- and glycerin-filled catheters, which presented poor visualization. In addition (also in T2-weighted sequences), CuSO4 presented better contrast when tested in the phantom than when tested in the patients, in which it provided some contrast but with poor identification of the first dwell position, mainly in the ring. Conclusion: We found CuSO4 to be the best solution for visualization of the applicator channels, mainly in T2-weighted images in vitro, although the materials tested presented low signal intensity in the images obtained in vivo, as well as poor precision in determining the first dwell position.


2017 ◽  
Vol 1 ◽  
pp. 239821281770144 ◽  
Author(s):  
Marshall A. Dalton ◽  
Peter Zeidman ◽  
Daniel N. Barry ◽  
Elaine Williams ◽  
Eleanor A. Maguire

Background: The hippocampus plays a central role in cognition, and understanding the specific contributions of its subregions will likely be key to explaining its wide-ranging functions. However, delineating substructures within the human hippocampus in vivo from magnetic resonance image scans is fraught with difficulties. To our knowledge, the extant literature contains only brief descriptions of segmentation procedures used to delineate hippocampal subregions in magnetic resonance imaging/functional magnetic resonance imaging studies. Methods: Consequently, here we provide a clear, step-by-step and fully illustrated guide to segmenting hippocampal subregions along the entire length of the human hippocampus on 3T magnetic resonance images. Results: We give a detailed description of how to segment the hippocampus into the following six subregions: dentate gyrus/Cornu Ammonis 4, CA3/2, CA1, subiculum, pre/parasubiculum and the uncus. Importantly, this in-depth protocol incorporates the most recent cyto- and chemo-architectural evidence and includes a series of comprehensive figures which compare slices of histologically stained tissue with equivalent 3T images. Conclusion: As hippocampal subregion segmentation is an evolving field of research, we do not suggest this protocol is definitive or final. Rather, we present a fully explained and expedient method of manual segmentation which remains faithful to our current understanding of human hippocampal neuroanatomy. We hope that this ‘tutorial’-style guide, which can be followed by experts and non-experts alike, will be a practical resource for clinical and research scientists with an interest in the human hippocampus.


2021 ◽  
Vol 8 (5) ◽  
Author(s):  
Xian Xu ◽  
Jingming Gao ◽  
Shuyun Liu ◽  
Liang Chen ◽  
Min Chen ◽  
...  

Abstract With the development of tissue engineering and regenerative medicine, it is much desired to establish bioimaging techniques to monitor the real-time regeneration efficacy in vivo in a non-invasive way. Herein, we tried magnetic resonance imaging (MRI) to evaluate knee cartilage regeneration after implanting a biomaterial scaffold seeded with chondrocytes, namely, matrix-induced autologous chondrocyte implantation (MACI). After summary of the T2 mapping and the T1-related delayed gadolinium-enhanced MRI imaging of cartilage (dGEMRIC) in vitro and in vivo in the literature, these two MRI techniques were tried clinically. In this study, 18 patients were followed up for 1 year. It was found that there was a significant difference between the regeneration site and the neighboring normal site (control), and the difference gradually diminished with regeneration time up to 1 year according to both the quantitative T1 and T2 MRI methods. We further established the correlation between the quantitative evaluation of MRI and the clinical Lysholm scores for the first time. Hence, the MRI technique was confirmed to be a feasible semi-quantitative yet non-invasive way to evaluate the in vivo regeneration of knee articular cartilage.


Sign in / Sign up

Export Citation Format

Share Document