scholarly journals High-Resolution MS and MSn Investigation of UV Oxidation Products of Phenazone-type Pharmaceuticals and Metabolites

2018 ◽  
Vol 82 (1) ◽  
pp. 261-269 ◽  
Author(s):  
Maxime Favier ◽  
Ann Van Schepdael ◽  
Deirdre Cabooter
Environments ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. 18 ◽  
Author(s):  
Marc-André Lecours ◽  
Emmanuel Eysseric ◽  
Viviane Yargeau ◽  
Jean Lessard ◽  
Gessie Brisard ◽  
...  

2013 ◽  
Vol 13 (7) ◽  
pp. 18113-18141
Author(s):  
J. F. Hamilton ◽  
M. R. Alfarra ◽  
N. Robinson ◽  
M. W. Ward ◽  
A. C. Lewis ◽  
...  

Abstract. Emissions of biogenic volatile organic compounds are though to contribute significantly to secondary organic aerosol formation in the tropics, but understanding the process of these transformations has proved difficult, due to the complexity of the chemistry involved and very low concentrations. Aerosols from above a South East Asian tropical rainforest in Borneo were characterised using liquid chromatography-ion trap mass spectrometry, high resolution aerosol mass spectrometry and fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) techniques. Oxygenated compounds were identified in ambient organic aerosol that could be directly traced back to isoprene, monoterpenes and sesquiterpene emissions, by combining field data on chemical structures with mass spectral data generated from synthetically produced products created in a simulation chamber. Eighteen oxygenated species of biogenic origin were identified in the rainforest aerosol from the precursors isoprene, α-pinene, limonene, α-terpinene and β-caryophyllene. The observations provide the unambiguous field detection of monoterpene and sesquiterpene oxidation products in SOA above a pristine tropical rainforest. The presence of 2-methyltetrol organosulfates and an associated sulfated dimer provides direct evidence that isoprene in the presence of sulfate aerosol can make a contribution to biogenic organic aerosol above tropical forests. High-resolution mass spectrometry indicates that sulfur can also be incorporated into oxidation products arising from monoterpene precursors in tropical aerosol.


2013 ◽  
Vol 13 (22) ◽  
pp. 11295-11305 ◽  
Author(s):  
J. F. Hamilton ◽  
M. R. Alfarra ◽  
N. Robinson ◽  
M. W. Ward ◽  
A. C. Lewis ◽  
...  

Abstract. Emissions of biogenic volatile organic compounds are though to contribute significantly to secondary organic aerosol formation in the tropics, but understanding these transformation processes has proved difficult, due to the complexity of the chemistry involved and very low concentrations. Aerosols from above a Southeast Asian tropical rainforest in Borneo were characterised using liquid chromatography–ion trap mass spectrometry, high-resolution aerosol mass spectrometry and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) techniques. Oxygenated compounds were identified in ambient organic aerosol that could be directly traced back to isoprene, monoterpenes and sesquiterpene emissions, by combining field data on chemical structures with mass spectral data generated from synthetically produced products created in a simulation chamber. Eighteen oxygenated species of biogenic origin were identified in the rainforest aerosol from the precursors isoprene, α-pinene, limonene, α-terpinene and β-caryophyllene. The observations provide the unambiguous field detection of monoterpene and sesquiterpene oxidation products in SOA above a pristine tropical rainforest. The presence of 2-methyl tetrol organosulfates and an associated sulfated dimer provides direct evidence that isoprene in the presence of sulfate aerosol can make a contribution to biogenic organic aerosol above tropical forests. High-resolution mass spectrometry indicates that sulfur can also be incorporated into oxidation products arising from monoterpene precursors in tropical aerosol.


Chemosphere ◽  
2017 ◽  
Vol 174 ◽  
pp. 66-75 ◽  
Author(s):  
N.V. Ul'yanovskii ◽  
D.S. Kosyakov ◽  
I.I. Pikovskoi ◽  
Yu.G. Khabarov

Sign in / Sign up

Export Citation Format

Share Document