Influence of five host plants of Aphis gossypii Glover on some population parameters of Hippodamia variegata (Goeze)

2009 ◽  
Vol 83 (2) ◽  
pp. 77-83 ◽  
Author(s):  
Xiu-Hua Wu ◽  
Xiao-Rong Zhou ◽  
Bao-Ping Pang
PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0146345 ◽  
Author(s):  
Li Wang ◽  
Shuai Zhang ◽  
Jun-Yu Luo ◽  
Chun-Yi Wang ◽  
Li-Min Lv ◽  
...  

2017 ◽  
Vol 9 (4) ◽  
pp. 77
Author(s):  
Saleh S. Alhewairini

Chemical control remains the main method of controlling the cotton aphid (Aphis gossypii Glover). Millions of dollars have been lost due to plant damage which resulted in reduced quality and yield of cotton. Nevertheless, A. gossypii can rapidly develop resistance to different groups of insecticides such as organophosphates, carbamates and pyrethroids. The potential of Huwa-San TR50 in controlling A. gossypii is yet to be tested. Huwa-San TR50 is a formula of hydrogen peroxide which has been stabilized by the addition of a small quantity of silver and has extensively used as a disinfectant. In this study, it was found to be very potent in killing A. gossypii and produced 93.5, 96.5, 97 and 95.5% mortality at 1000, 2000, 3000 and 4000 ppm, respectively, after 48 h of exposure. Furthermore, there was no significant difference between four Huwa-San TR50 concentrations after 48 h of exposure, on the mortality of A. gossypii. Huwa-San TR50 of up to 4000 ppm had no observable effects on the mortality and behavior of adult honeybee workers (Apis mellifera lamarckii) as compared with the control. Also, Huwa-San TR50 concentration of up to 3000 ppm had no observable effect on seven-spot ladybird beetles (Coccinella septempunctata) whereas a concentration of 4000 ppm produced 100% mortality after 24 h of exposure. Huwa-San TR50 concentrations of up to 2000 ppm failed to produce any symptoms on cucumber leaves. The differential effects of Huwa-San TR50 on aphids and beneficial insects, suggest the need for further investigation to understand the effects of Huwa-San TR50 on other host plants of aphids and aphid species.


1994 ◽  
Vol 29 (3) ◽  
pp. 289-301 ◽  
Author(s):  
C. L. McKenzie ◽  
B. Cartwright

The susceptibility of Aphis gossypii (Glover) reared on watermelon or cotton to seven insecticides was determined using a Petri dish bioassay. Baseline susceptibility values to each insecticide for susceptible laboratory A. gossypii colonies varied between host plants, but aphids reared on cotton were generally more tolerant to insecticides than aphids from watermelon. The ratio of relative susceptibility of cotton aphids to melon aphids was as much as 1000 with dimethoate or 415 with bifenthrin, however, no significant differences in susceptibility was observed with chlorpyrifos between aphid populations from the two host plants. Orders of toxicity for the seven insecticides varied between host plant, but on watermelon, the order of toxicity was bifenthrin > oxydemeton-methyl > methomyl > dicrotophos > dimethoate > chlorpyrifos > endosulfan. Because of the wide range of response to insecticide doses observed with bifenthrin on melon aphid and with dimethoate and endosulfan against cotton aphid, use of the Petri dish bioassay method as a discriminating-dose field bioassay for these insecticides may not provide consistent estimations of the resistant nature of field populations. Bioassay data taken at 3 h were generally more consistent and provided a more predictive mortality model than those taken at 2 or 4 h for most insecticides. LC50 values estimated for dimethoate with melon aphids using leaf-spray or leaf residue bioassays differed little from LC50 values estimated with the Petri dish bioassay. Because Petri dish bioassays cost less than half as much as plant-based bioassays, provide comparable results, and require less assay time, this method is more suitable for use in monitoring for insecticide resistance in melon aphid.


2019 ◽  
Vol 73 (3) ◽  
pp. 367
Author(s):  
Ross H. Miller ◽  
Robert G. Foottit ◽  
Eric Maw ◽  
Keith S. Pike

Sign in / Sign up

Export Citation Format

Share Document