Forward flight of a model butterfly: Simulation by equations of motion coupled with the Navier-Stokes equations

2012 ◽  
Vol 28 (6) ◽  
pp. 1590-1601 ◽  
Author(s):  
Hua Huang ◽  
Mao Sun
Author(s):  
Muheng Zhang ◽  
Yongsheng Lian

Coulter counters are analytical microfluidic instrument used to measure the size and concentration of biological cells or colloid particles suspended in electrolyte. The underlying working mechanism of Coulter counters is the Coulter principle which relies on the fact that when low-conductive cells pass through an electric field these cells cause disturbances in the measurement (current or voltage). Useful information about these cells can be obtained by analyzing these disturbances if an accurate correlation between the measured disturbances and cell characteristics. In this paper we use computational fluid dynamics method to investigate this correlation. The flow field is described by solving the Navier-Stokes equations, the electric field is represented by a Laplace’s equation in which the conductivity is calculated from the Navier-Stokes equations, and the cell motion is calculated by solving the equations of motion. The accuracy of the code is validated by comparing with analytical solutions. The study is based on a coplanar Coulter counter with three inlets that consist of two sheath flow inlet and one conductive flow inlet. The effects of diffusivity, cell size, sheath flow rate, and cell geometry are discussed in details. The impacts of electrode size, gap between electrodes and electrode location on the measured distribution are also studied.


2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
Alexander Braginsky

Abstract In this paper, we study the vortex motion of a continuous medium, which is described by forces obtained from the principle of least action. It is shown that in a continuous medium the vortex force components are proportional to the velocity and pressure gradient components. This article gives a description of the 2D vortex motion of air in zones of high and low pressure. If the pressure decreases, the angular velocity of rotation of the continuous medium increases, whereas if the pressure increases, the angular velocity fades. The lifting force is obtained due to the vortex movement of air in the form of a funnel. It is shown that the vortex force contains a vortex term of the Euler hydrodynamic equations with a relative factor equal to the velocity of the continuous medium squared divided by the sound velocity squared. To describe the motion of a continuous medium correctly it is necessary to replace the forces obtained by Euler with the forces obtained from the minimum of action in the equations of motion. It is concluded that vortex motions and turbulence are described by the obtained equations of motion, and not by the Navier–Stokes equations. Most likely, this is related to the Problem of the Millennium description of turbulence announced at the International Congress of Mathematics in 2000.


2003 ◽  
Vol 70 (1) ◽  
pp. 44-49 ◽  
Author(s):  
V. Sarin ◽  
A. H. Sameh

The paper presents an algebraic scheme to construct hierarchical divergence-free basis for velocity in incompressible fluids. A reduced system of equations is solved in the corresponding subspace by an appropriate iterative method. The basis is constructed from the matrix representing the incompressibility constraints by computing algebraic decompositions of local constraint matrices. A recursive strategy leads to a hierarchical basis with desirable properties such as fast matrix-vector products, a well-conditioned reduced system, and efficient parallelization of the computation. The scheme has been extended to particulate flow problems in which the Navier-Stokes equations for fluid are coupled with equations of motion for rigid particles suspended in the fluid. Experimental results of particulate flow simulations have been reported for the SGI Origin 2000.


2011 ◽  
Vol 675 ◽  
pp. 117-140 ◽  
Author(s):  
TIMOUR RADKO

An analytical theory is developed which illustrates the dynamics of the spontaneous generation of thermohaline intrusions in the stratified ocean with density compensated lateral temperature and salinity gradients. Intrusions in the model are driven by the interaction with the initially homogeneous field of salt fingers, whose amplitude and spatial orientation is weakly modulated by the long wavelength perturbations introduced into the system. The asymptotic multiscale analysis makes it possible to identify intrusive instabilities resulting from the positive feedback of salt fingers on large-scale perturbations and analyse the resulting patterns. The novelty of the proposed analysis is related to our ability to avoid using empirical double-diffusive flux laws – an approach taken by earlier models. Instead, we base our analytical explorations directly on the governing (Navier–Stokes) equations of motion. The model predictions of the growth rates and preferred slopes of intrusions are in general agreement with the laboratory and field measurements.


2017 ◽  
Vol 4 (2) ◽  
pp. 160447 ◽  
Author(s):  
M. Scholle ◽  
F. Marner

Drawing an analogy with quantum mechanics, a new Lagrangian is proposed for a variational formulation of the Navier–Stokes equations which to-date has remained elusive. A key feature is that the resulting Lagrangian is discontinuous in nature, posing additional challenges apropos the mathematical treatment of the related variational problem, all of which are resolvable. In addition to extending Lagrange's formalism to problems involving discontinuous behaviour, it is demonstrated that the associated equations of motion can self-consistently be interpreted within the framework of thermodynamics beyond local equilibrium, with the limiting case recovering the classical Navier–Stokes equations. Perspectives for applying the new formalism to discontinuous physical phenomena such as phase and grain boundaries, shock waves and flame fronts are provided.


2021 ◽  
Author(s):  
Tahmina Akhter ◽  
Katrin Rohlf

The flow of a compressible fluid with slip through a cylinder with an asymmetric local constriction has been considered both numerically, as well as analytically. For the numerical work, a particle-based method whose dynamics is governed by the multiparticle collision (MPC) rule has been used together with a generalized boundary condition that allows for slip at the wall. Since it is well known that an MPC system corresponds to an ideal gas and behaves like a compressible, viscous flow on average, an approximate analytical solution has been derived from the compressible Navier–Stokes equations of motion coupled to an ideal gas equation of state using the Karman–Pohlhausen method. The constriction is assumed to have a polynomial form, and the location of maximum constriction is varied throughout the constricted portion of the cylinder. Results for centerline densities and centerline velocities have been compared for various Reynolds numbers, Mach numbers, wall slip values and flow geometries.


2014 ◽  
Vol 1016 ◽  
pp. 359-364 ◽  
Author(s):  
Chen Fang Cai ◽  
Jiang Hao Wu ◽  
Bin Liang

In this paper, aerodynamic properties of Blended Wing Body (BWB) civil aircraft are studied by two models: one calls complete model that is computed by numerical simulation coupling equations of motion with the Navier-Stokes equations, and the other doesn’t consider the equations of motion (without dynamic response). The results show that the model without dynamic response can also correctly predict the trend of the dynamic properties compared with complete model. Nevertheless, there are some quantitative differences existing between the complete model and the model without dynamic response.


1990 ◽  
Vol 221 ◽  
pp. 289-310 ◽  
Author(s):  
Michael J. Landman

The Navier-Stokes equations for flow in a rotating circular pipe are solved numerically, subject to imposing helical symmetry on the velocity field v = v(r, θ + αz,t). The helical symmetry is exploited by writing the equations of motion in helical variables, reducing the problem to two dimensions. A limited study of the pipe flow is made in the parameter space of the wavenumber α, and the axial and azimuthal Reynolds numbers. The steadily rotating waves previously studied by Toplosky & Akylas (1988), which arise from the linear instability of the basic steady flow, are found to undergo a series of bifurcations, through periodic to aperiodic time dependence. The relevance of these results to the mechanism of laminar-turbulent transition in a stationary pipe is discussed.


Sign in / Sign up

Export Citation Format

Share Document