Linear and Nonlinear Biphasic Mechanical Properties of Goat IVDs Under Different Swelling Conditions in Confined Compression

Author(s):  
Akbar Rasoulian ◽  
Farid Vakili-Tahami ◽  
Theodoor H. Smit
2016 ◽  
Vol 70 (7) ◽  
pp. 1118-1127 ◽  
Author(s):  
Julio Banquet-Terán ◽  
Boris Johnson-Restrepo ◽  
Alveiro Hernández-Morelo ◽  
Jorge Ropero ◽  
Miriam Fontalvo-Gomez ◽  
...  

Author(s):  
Muhammad Naveed ◽  

Although mechanical properties of soil are fast and easy to measure, they have not been used as indicators of soil health apart from cone penetration resistance. The confined compression test is traditionally used for the prediction of soil compaction risks. Other mechanical tests such as soil rheometry, miniature indentation test, and tensile strength are used for assessing the impact of certain amendments on the stability of the soil. Rheological techniques are appropriate to investigate microstructural stability of soil on a particle-particle scale. Miniature indentation test is very useful to perform when mechanical properties of soil are required to measure at the mm scale. Measurement of the tensile strength of soil has an advantage as it eliminates the effect of water content. There is clearly a need for more practical and rigorous testing on comparing different mechanical properties of the soil to test how they perform relative to each other.


Author(s):  
Justin Yu ◽  
Neda Manouchehri ◽  
Shun Yamamoto ◽  
Brian K. Kwon ◽  
Thomas R. Oxland

2013 ◽  
Vol 800 ◽  
pp. 181-188
Author(s):  
Xiao Yan Yang ◽  
Wen Bai Liu ◽  
Jia Jun Wang ◽  
Wen Hui Shi

Through confined compression test and direct shear test, studied the mechanical properties of the same curing agent of different soil dredged mud, compared the difference of the same curing agent of different soil dredged mud. By confined compression test, the compression modulus of clay, silty sand and silty soil dredged mud after curing increases by 603.7%, 529.0% , 603.7% respectively. By direct shear test, the shear strength of clay dredged mud after curing increases to infinity; silty sands shear strength after curing increases by 209.1% in average; silty soils shear strength increases after curing by 147.5% in average. The compression and shear resistance of this kind of special curing agent for clay is best, silty sand second, but for the silty soil only has a little effect.


Soft Matter ◽  
2014 ◽  
Vol 10 (36) ◽  
pp. 7051-7060 ◽  
Author(s):  
Daniel B. Allan ◽  
Daniel M. Firester ◽  
Victor P. Allard ◽  
Daniel H. Reich ◽  
Kathleen J. Stebe ◽  
...  

Microrheology tracks the evolution in the linear and nonlinear mechanical properties of layers of the protein lysozyme adsorbing at the air–water interface as the layers undergo a viscoelastic transition.


2003 ◽  
Vol 07 (02) ◽  
pp. 145-150
Author(s):  
Diego Correa ◽  
Dennis Cullinane ◽  
Juan Carlos Briceño

Articular Cartilage is a load bearing tissue whose microarchitecture, electrochemical composition, and fluid interactions afford it unique mechanical properties. It consists of an extracellular matrix (ECM) interspersed with a sparse population of chondrocytes, varying in density by depth. The structure and mechanical properties of this highly specialized tissue also vary depending on depth from the articular surface; with three specialized zones, each with unique material properties. Typically this tissue is mechanically modeled as a biphasic material, consisting of a solid phase and a fluid phase, which can redistribute itself under loading, altering hydrostatic pressure within the material. Thus, articular cartilage exhibits a time-dependent viscoelastic behavior when subjected to constant loading or deformation, and will reach an equilibrium via stress relaxation and creep behavior. The objective of this study was to test a custom designed confined compression chamber. We characterize the ability of the test chamber to generate curves capable of quantifying the stress relaxation level and equilibrium state in bovine articular cartilage, and to show the preliminary results of a comparison between the equilibrium aggregate modulus (HA) obtained from pre- conditioned and non-conditioned tissues. Using fresh bovine articular cartilage samples, stress relaxation tests were conducted in compression, obtaining equilibrium stress and HA through a linear relation between the initial strain and the equilibrium stress. The test specimens were divided into two groups, one with a pre-conditioning load and the other without. The tests resulted in equilibrium stresses of 0.015 ± 0.0067 MPa for the non-conditioned and 0.067 ± 0.012 MPA for the pre-conditioned, and HA values of 0.205 ± 0.100 MPa for the unconditioned group and 0.878 ± 0.160 MPa in the pre-conditioned group. Our confined compression chamber successfully produced the stress relaxation curve characterizing the mechanical behavior of articular cartilage, defining both the equilibrium stress and HA. Our results suggest that pre-conditioning correlates with a higher equilibrium stress and aggregate modulus based on the fact that pre-loading the specimens reduces the effects of viscoelasticity.


The mechanical properties (linear and nonlinear elastic and plastic) of two-dimensional cellular materials, or honeycombs, are analysed and compared with experiments. The properties are well described in terms of the bending, elastic buckling and plastic collapse of the beams that make up the cell walls.


Sign in / Sign up

Export Citation Format

Share Document