Capillary Phenomena in the Framework of the Two-Dimensional Density Functional Theory

Adsorption ◽  
2005 ◽  
Vol 11 (S1) ◽  
pp. 133-138 ◽  
Author(s):  
Eugene A. Ustinov ◽  
Duong D. Do
RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8654-8663
Author(s):  
Fatima Zahra Ramadan ◽  
Flaviano José dos Santos ◽  
Lalla Btissam Drissi ◽  
Samir Lounis

Based on density functional theory combined with low-energy models, we explore the magnetic properties of a hybrid atomic-thick two-dimensional (2D) material made of germanene doped with fluorine atoms in a half-fluorinated configuration (Ge2F).


2015 ◽  
Vol 17 (7) ◽  
pp. 5000-5005 ◽  
Author(s):  
Eunjeong Yang ◽  
Hyunjun Ji ◽  
Jaehoon Kim ◽  
Heejin Kim ◽  
Yousung Jung

MXenes are predicted to be a family of promising Na anode materials with desirable electrochemical properties using density functional theory.


2019 ◽  
Author(s):  
Qitang Fan ◽  
Daniel Martin-Jimenez ◽  
Daniel Ebeling ◽  
Claudio K. Krug ◽  
Lea Brechmann ◽  
...  

Various two-dimensional (2D) carbon allotropes with non-alternant topologies, such as pentaheptites and phagraphene, have been proposed. Predictions indicate that these metastable carbon polymorphs, which contain odd-numbered rings, possess unusual (opto)electronic properties. However, none of these materials has been achieved experimentally due to synthetic challenges. In this work, by using on-surface synthesis, nanoribbons of the non-alternant graphene allotropes, phagraphene and tetra-penta-hepta(TPH)-graphene have been obtained by dehydrogenative C-C coupling of 2,6-polyazulene chains. These chains were formed in a preceding reaction step via on-surface Ullmann coupling of 2,6-dibromoazulene. Low-temperature scanning probe microscopies with CO-functionalized tip and density functional theory calculations have been used to elucidate their structural properties. <br>


Sign in / Sign up

Export Citation Format

Share Document