scholarly journals Role of TGFβ1 and WNT6 in FGF2 and BMP4-driven endothelial differentiation of murine embryonic stem cells

Angiogenesis ◽  
2021 ◽  
Author(s):  
Anna Gualandris ◽  
Alessio Noghero ◽  
Davide Cora’ ◽  
Elena Astanina ◽  
Marco Arese ◽  
...  

AbstractEmbryonic stem cells (ES) are a valuable source of endothelial cells. By co-culturing ES cells with the stromal PA6 cells, the endothelial commitment can be achieved by adding exogenous FGF2 or BMP4. In this work, the molecular pathways that direct the differentiation of ES cells toward endothelium in response to FGF2 are evaluated and compared to those activated by BMP4. To this purpose the genes expression profiles of both ES/PA6 co-cultures and of pure cultures of PA6 cells were obtained by microarray technique at different time points. The bioinformatics processing of the data indicated TGFβ1 as the most represented upstream regulator in FGF2-induced endothelial commitment while WNT pathway as the most represented in BMP4-activated endothelial differentiation. Loss of function experiments were performed to validate the importance of TGFβ1 and WNT6 respectively in FGF2 and BMP4-induced endothelial differentiation. The loss of TGFβ1 expression significantly impaired the accomplishment of the endothelial commitment unless exogenous recombinant TGFβ1 was added to the culture medium. Similarly, silencing WNT6 expression partially affected the endothelial differentiation of the ES cells upon BMP4 stimulation. Such dysfunction was recovered by the addition of recombinant WNT6 to the culture medium. The ES/PA6 co-culture system recreates an in vitro complete microenvironment in which endothelial commitment is accomplished in response to alternative signals through different mechanisms. Given the importance of WNT and TGFβ1 in mediating the crosstalk between tumor and stromal cells this work adds new insights in the mechanism of tumor angiogenesis and of its possible inhibition.

2019 ◽  
Author(s):  
Aseda Tena ◽  
Yuxiang Zhang ◽  
Nia Kyritsis ◽  
Anne Devorak ◽  
Jeffrey Zurita ◽  
...  

ABSTRACTMild replication stress enhances appearance of dozens of robust recurrent genomic break clusters, termed RDCs, in cultured primary mouse neural stem and progenitor cells (NSPCs). Robust RDCs occur within genes (“RDC-genes”) that are long and have roles in neural cell communications and/or have been implicated in neuropsychiatric diseases or cancer. We sought to develop an in vitro approach to determine whether specific RDC formation is associated with neural development. For this purpose, we adapted a system to induce neural progenitor cell (NPC) development from mouse embryonic stem cell (ESC) lines deficient for XRCC4 plus p53, a genotype that enhances DNA double-strand break (DSB) persistence to enhance detection. We tested for RDCs by our genome wide DSB identification approach that captures DSBs genome-wide via their ability to join to specific genomic Cas9/sgRNA-generated bait DSBs. In XRCC4/p53-deficient ES cells, we detected 7 RDCs, which were in genes, with two RDCs being robust. In contrast, in NPCs derived from these ES cell lines, we detected 29 RDCs, a large fraction of which were robust and associated with long, transcribed neural genes that were also robust RDC-genes in primary NSPCs. These studies suggest that many RDCs present in NSPCs are developmentally influenced to occur in this cell type and indicate that induced development of NPCs from ES cells provides an approach to rapidly elucidate mechanistic aspects of NPC RDC formation.SIGNIFICANCE STATEMENTWe previously discovered a set of long neural genes susceptible to frequent DNA breaks in primary mouse brain progenitor cells. We termed these genes RDC-genes. RDC-gene breakage during brain development might alter neural gene function and contribute to neurological diseases and brain cancer. To provide an approach to characterize the unknown mechanism of neural RDC-gene breakage, we asked whether RDC-genes appear in neural progenitors differentiated from embryonic stem cells in culture. Indeed, robust RDC-genes appeared in neural progenitors differentiated in culture and many overlapped with robust RDC-genes in primary brain progenitors. These studies indicate that in vitro development of neural progenitors provides a model system for elucidating how RDC-genes are formed.


2007 ◽  
Vol 19 (1) ◽  
pp. 231
Author(s):  
S. Wang ◽  
X. Tang ◽  
Y. Niu ◽  
H. Chen ◽  
T. Li ◽  
...  

The rabbit, as a laboratory animal model, has several advantages in the study of human physiological disorders. In this study, stable putative pluripotent rabbit embryonic stem cells (rESCs) were derived from in vivo-fertilized and in vitro-cultured blastocysts. The rabbit ICMs were obtained by 0.05% trypsin–0.008% EDTA treatment and mechanical separation; the ES-like cell colonies seen several days later. ICM-derived outgrowths which were treated with 5 mg/mL-1 dispase, followed by 0.05% trypsin–0.008% EDTA, were mechanically disaggregated into small clumps and reseeded on MEFs. The putative ES cell lines maintained expression of pluripotent cells markers and normal XY karyotype for long periods of culture (>1 month). The putative rESCs expressed alkaline phosphatase, transcription factor Oct-4, stage-specific embryonic antigens (SSEA-1, SSEA-3, and SSEA-4), and tumor-related antigens (TRA-1-60 and TRA-1-81). The morphological characteristics of the putative ESCs are closer to those of human ESCs; their high speed of proliferation, however, is closer to that of mouse ESCs. Putative rabbit ESCs were induced to differentiate into many cell types including trophoblast cells, similar to primate ESCs, in vitro, and formed teratomas with derivatives of the 3 major germ layers in vivo when injected into SCID mice. Using RT-PCR measurement, but with some differences in ligands and inhibitors, and comparing with human and mouse ESCs, the putative rabbit ESCs expressed similar genes related to pluripotency (Oct-4, Nanog, SOX2, and UTF-1) and similar genes of FGF, WNT, and TGF signaling pathways related to the proliferation and self-renewal. Our further research work showed that TGF beta and FGF pathways cooperate to maintain pluripotency of rabbit ESCs similar to those of human ES cells.


2012 ◽  
Vol 529-530 ◽  
pp. 385-390
Author(s):  
Koichi Imai ◽  
Fumio Watari ◽  
Kazuaki Nakamura ◽  
Akito Tanoue

The risks of nanomaterials for future generations should be elucidated. Thus, it is important to establish an experimental method to accurately examine embryotoxicity. We have conducted anin vitroembryotoxicity test with mouse ES cells to examine the embryotoxicities of various nanomaterials. In this study, the C60 fullerene did not influence the differentiation of ES-D3 cells and "non embryotoxicity". In the future, the biological safety should be comprehensively examined by improving dispersion in medium.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Louis Norman ◽  
Paul Tarrant ◽  
Timothy Chevassut

TET2 is a methylcytosine dioxygenase that is frequently mutated in myeloid malignancies, notably myelodysplasia and acute myeloid leukemia. TET2 catalyses the conversion of 5′-methylcytosine to 5′-hydroxymethylcytosine within DNA and has been implicated in the process of genomic demethylation. However, the mechanism by which TET2 loss of function results in hematopoietic dysplasia and leukemogenesis is poorly understood. Here, we show that TET2 is expressed in undifferentiated embryonic stem cells and that its knockdown results in reduction of 5′-hydroxymethylcytosine in genomic DNA. We also present DNA methylation data from bone marrow samples obtained from patients with TET2-mutated myelodysplasia. Based on these findings, we sought to identify the role of TET2 in regulating pluripotency and differentiation. We show that overexpression of TET2 in a stably integrated transgene leads to increased alkaline phosphatase expression in differentiating ES cells and impaired differentiation in methylcellulose culture. We speculate that this effect is due to TET2-mediated expression of stem cell genes in ES cells via hydroxylation of 5′-methylcytosines at key promoter sequences within genomic DNA. This leads to relative hypomethylation of gene promoters as 5′-hydroxymethylcytosine is not a substrate for DNMT1-mediated maintenance methylation. We sought to test this hypothesis by cotransfecting the TET2 gene with methylated reporter genes. The results of these experiments are presented.


1995 ◽  
Vol 108 (10) ◽  
pp. 3181-3188 ◽  
Author(s):  
A. Fraichard ◽  
O. Chassande ◽  
G. Bilbaut ◽  
C. Dehay ◽  
P. Savatier ◽  
...  

Mouse embryonic stem cells were induced to differentiate in culture with retinoic acid. Putative precursors of neurons and glial cells (nestin-positive cells) were clearly identified as early as three days after the onset of differentiation. At day 6, neuron-like cells could be clearly identified, either as isolated cells or as cellular networks. Some of these cells were positive for astrocyte- or oligodendrocyte-specific antigens (GFAP or O4 antigens, respectively). Other cells were positive for neuron-specific antigens (cytoskeleton proteins MAP2, MAP5 and NF200, as well as synaptophysin). Some neuronal-like cells were also positive for acetylcholinesterase activity or glutamic acid decarboxylase expression, indicating that ES cells could differentiate into GABAergic and possibly cholinergic neurons. Electrophysiological analyses performed in voltage clamp conditions showed that cell membranes contained voltage-dependent channels. Overshooting action potentials could be triggered by current injection. Taken together, these data provide evidence that embryonic stem cells can differentiate first into neuron-glia progenitors, and later into glial cells and functional neurons, in vitro. This technique provides an unique system to study early steps of neuronal differentiation in vitro.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Tao Tan ◽  
Yanfeng Zhang ◽  
Weizhi Ji ◽  
Ping Zheng

Spermatogonial stem cells (SSCs) play fundamental roles in spermatogenesis. Although a handful of genes have been discovered as key regulators of SSC self-renewal and differentiation, the regulatory network responsible for SSC function remains unclear. In particular, small RNA signatures during mouse spermatogenesis are not yet systematically investigated. Here, using next generation sequencing, we compared small RNA signatures of in vitro expanded SSCs, testis-derived somatic cells (Sertoli cells), developing germ cells, mouse embryonic stem cells (ESCs), and mouse mesenchymal stem cells among mouse embryonic stem cells (ESCs) to address small RNA transition during mouse spermatogenesis. The results manifest that small RNA transition during mouse spermatogenesis displays overall declined expression profiles of miRNAs and endo-siRNAs, in parallel with elevated expression profiles of piRNAs, resulting in the normal biogenesis of sperms. Meanwhile, several novel miRNAs were preferentially expressed in mouse SSCs, and further investigation of their functional annotation will allow insights into the mechanisms involved in the regulation of SSC activities. We also demonstrated the similarity of miRNA signatures between SSCs and ESCs, thereby providing a new clue to understanding the molecular basis underlying the easy conversion of SSCs to ESCs.


2020 ◽  
Author(s):  
Masakazu Machida ◽  
Rie Abutani ◽  
Hiroshi Miyajima ◽  
Tetsuji Sasaki ◽  
Yoshiko Abe ◽  
...  

Clinical use of human embryonic stem cells (ESCs) as a raw material requires good manufacturing practice-compliant axillary materials such as culture medium. To this end, animal components should not be used and contamination of virus/bacteria/fungus and allergens are a concern. In addition, animal components such as albumin and fetal bovine serum pose difficulties such as a lot-to-lot variation. However, only a limited number of animal component-free media have been developed to date. In this study, we investigated whether SEES2 ESCs can be stably propagated for 16 passages (54 population doublings) over a period of 60 days in a newly established Stem-Partner ACF medium. SEES2 ESC maintained their intact karyotype, i.e. 46,XX, and their undifferentiated phenotypes after long-term culture. An in vitro differentiation assay revealed that SEES2 ESCs exhibited multipotency, i.e. endodermal, mesodermal and ectodermal differentiation. Subcutaneous implantation of SEES2 ESCs generated mature teratomas without malignant transformation. These results show that SEES2 ESCs in the Stem-Partner ACF medium can be used to establish master cell banks for future regenerative medicine as well as other ESCs in the previously reported culture medium.


2007 ◽  
Vol 19 (1) ◽  
pp. 232
Author(s):  
A. Yabuuchi ◽  
K. Kitai ◽  
A. Takeuchi ◽  
P. Lerou ◽  
K. Ng ◽  
...  

Organ or tissue transplantation is the preferred treatment for numerous diseases but is hindered by immunologic barriers. Genetically matched pluripotent embryonic stem cells generated via nuclear transfer (ntES cells) or parthenogenesis (pES cells) are possible sources of histocompatible cells and tissues. We have developed two ways of isolating pES cells that carry the full complement of major histocompatibility complex (MHC) antigens of the oocyte donors. One method entails activation of oocytes after blockade of karyokinesis in meiosis II, followed by selection of predominantly homozygous pES cells that have undergone recombination in their MHC antigen region to restore the heterozygous maternal MHC genotype (parthenote recombinant, or prES cells). The second method involves activation of immature oocytes after blockade of karyokinesis of meiosis I, followed by selection of predominantly heterozygous pES lines that retain the MHC genotype of the oocyte donor (parthenote clone recombinant, or pcrES cells). The cells are pluripotent by several criteria: teratoma formation, in vitro differentiation into hematopoietic elements, and high-level skin chimerism in blastocyst chimeras. Breeding of 8 founder females and examination of over 700 progeny failed to demonstrate germ line transmission of the pES cells. Injection of over 50 tetraploid embryos with these lines and embryo transfer have failed to support full gestational development. However, differentiated tissues from these pluripotent ES cells engraft when transplanted into genetically matched immunocompetent recipients, demonstrating that selected pES cells can serve as a source of histocompatible tissues for transplantation.


Sign in / Sign up

Export Citation Format

Share Document