scholarly journals Chemerin regulates normal angiogenesis and hypoxia-driven neovascularization

Author(s):  
Cyrine Ben Dhaou ◽  
Kamel Mandi ◽  
Mickaël Frye ◽  
Angela Acheampong ◽  
Ayoub Radi ◽  
...  

AbstractChemerin is a multifunctional protein initially characterized in our laboratory as a chemoattractant factor for leukocyte populations. Its main functional receptor is CMKLR1. We identified previously chemerin as an anti-tumoral factor inhibiting the vascularization of tumor grafts. We show here that overexpression of bioactive chemerin in mice results in a reduction of the density of the retinal vascular network during its development and in adults. Chemerin did not affect vascular sprouting during the post-natal development of the network, but rather promoted endothelial cell apoptosis and vessel pruning. This phenotype was reversed to normal in CMKLR1-deficient mice, demonstrating the role of this receptor. Chemerin inhibited also neoangiogenesis in a model of pathological proliferative retinopathy, and in response to hind-limb ischemia. Mechanistically, PTEN and FOXO1 antagonists could almost completely restore the density of the retinal vasculature, suggesting the involvement of the PI3-kinase/AKT pathway in the chemerin-induced vessel regression process.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Sebastian Cremer ◽  
Anne Klotzsche-von Ameln ◽  
Alessia Orlandi ◽  
Irina Korovina ◽  
Bettina Gercken ◽  
...  

Developmental endothelial locus-1 (Del-1) is an endothelial cell-derived secreted protein circulating in blood and associated with the cell surface and the extracellular matrix. As we previously demonstrated, Del-1 restricts leukocyte recruitment by inhibiting the β2-integrin, LFA-1. Leukocytes and progenitor cells (PC) may contribute to angiogenesis. The role of endogenous Del-1 in angiogenesis is elusive. We found, that physiological angiogenesis of the developing retina was not affected in the Del-1-/- mice compared to the wildtype (WT) mice. Surprisingly, Del-1-/- mice displayed a significantly increased angiogenic response compared to WT mice after induction of hind limb ischemia (144 ± 6 % increase of capillary density) and retinal ischemia (retinopathy of prematurity model) suggesting that endogenous Del-1 is an inhibitor of ischemia-induced neovascularization. Silencing of Del-1 with siRNA did not affect the angiogenic sprouting of endothelial cell (EC) spheroids, indicating that Del-1 blocks angiogenesis in a non-endothelial cell autonomous pathway. Soluble Del-1 blocked the adhesion of inflammatory cells on EC monolayers. In line with these results, ischemic muscles and ischemic retinae from Del-1-/- mice displayed an enhanced infiltration with inflammatory cells compared to the WT mice. Since Del-1 blocks inflammatory cell homing by inhibiting the leukocytic LFA-1-integrin, we addressed the role of the Del-1/LFA-1-integrin interaction on the inhibitory function of endogenous Del-1 on angiogenesis. Indeed, Del-1/LFA-1-double deficiency reversed the pro-angiogenic phenotype of the Del-1-/- mice to the level of WT mice in the model of hind limb ischemia. Thus, the inhibitory role of Del-1 on neovascularization is mediated by the interaction of Del-1 with the LFA-1-integrin. Moreover, Del-1-deficiency led to an increased homing of intravenously injected murine fluorescence-labeled WT Lin- BM PC in ischemic muscles in comparison to WT mice after the induction of hind limb ischemia. Taken together, Del-1 acts as a negative regulator of ischemia-induced angiogenesis by interacting with the LFA-1-integrin expressed in hematopoietic cells, thereby inhibiting the homing of hematopoietic cells to ischemic tissues.


Acta Naturae ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 63-67
Author(s):  
A. A. Kalinina ◽  
Yu. Yu. Silaeva ◽  
D. B. Kazansky ◽  
L. M. Khromykh

Cyclophilin A (CypA) is a multifunctional protein that exhibits an isomerase activity and exists in the intracellular and secretory forms. Secretory CypA promotes regeneration of the hematopoietic and the immune systems of an organism by stimulating stem cell migration from the bone marrow. New approaches based on CypA are currently being developed for the treatment of limb ischemia, neutralization of the side effects of Cyclosporine A (CsA) therapy, etc. However, the role of CypA in the antitumor immune response is still unexplored. In this work, we used the model experimental system of lymphoma EL-4 rejection in B10.D2(R101) mice and showed that recombinant human CypA (rhCypA) stimulates the antitumor immune response via early recruitment of granulocytes to the tumor cell localization site and rapid accumulation of effector T-killers


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Emmanouil Chavakis ◽  
Andreas Hain ◽  
Alessia Orlandi ◽  
Guillaume Carmona ◽  
Thomas Quertermous ◽  
...  

Progenitor cells (PC) are recruited to ischemic tissues and improve neovascularization. Beta2-integrins are essential for adhesion, transmigration and homing of PC to ischemic tissues. Developmental Endothelial Locus-1 (Del-1) is an extracellular matrix protein, that binds alphaVbeta3- and alphaVbeta5-integrins and is up-regulated during ischemia. Therefore, we investigated the role of endogenous Del-1 for angiogenesis and homing functions of PC. The Del-1-deficient mice (Del-1 −/− ) displayed a significantly increased angiogenic response in ischemic muscles in comparison to the wild type (WT) mice in the model of hind limb ischemia. However, when we assessed the role of Del-1 in HUVEC in vitro , silencing of Del-1 by siRNA did not affect angiogenic sprouting. Moreover, the ischemic muscles of Del-1 −/− mice displayed a higher infiltration with CD45 + hematopoietic cells than WT mice, suggesting that Del-1 may have an inhibitory effect on homing of PC and inflammatory cells to ischemic tissues. Interestingly, in adhesion assays human endothelial progenitor cells (EPC) and murine Lin − progenitor cells bound to Del-1 via beta2-integrins, but not via the alphaVbeta3- and alphaVbeta5- integrins. Furthermore, soluble Del-1 significantly inhibited the adhesion of EPC to HUVEC monolayers and to the major beta2-integrin-ligand, ICAM-1, raising the possibility that Del-1 is a beta2-integrin-inhibitor. Indeed, WT murine bone marrow mononuclear cells displayed higher adhesion rates on Del-1-deficient murine lung endothelial cells (LEC) than on WT LEC. In order to investigate the role of Del-1 for in vivo homing of PC, we intravenously injected murine fluorescence-labeled WT Lin − bone marrow PC in WT and Del-1 −/− mice 2 days after the induction of hind limb ischemia. Interestingly, the homing of injected Lin − cells to ischemic muscles was significantly increased in Del-1 −/− in comparison to WT mice (200± 30 % increase). Taken together, endogenous Del-1 is a new beta2-integrin ligand, which blocks beta2-integrin-dependent adhesion and homing of PC to ischemic tissues. It is conceivable, that endogenous Del-1 may reduce ischemia-induced neovascularization through an inhibitory effect on the beta2-integrins of progenitor and inflammatory cells.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Alvaro F Manrique ◽  
Shyamal C Bir ◽  
Elvis Peter ◽  
Rui Wang ◽  
Christopher G Kevil

Introduction: Arteriogenesis is an important process involving remodeling of collateral vasculature during chronic or intermittent tissue ischemia. CSE and eNOS are the two principle enzymes for hydrogen sulfide (H 2 S) and Nitric Oxide (NO) generation. Although role of NO during arteriogenesis is partially known, the role of CSE dependent H 2 S production during arteriogenesis remains unknown. Hypothesis/objective: We sought to determine the role of CSE generated H 2 S on arteriogenesis activity of CSE knockout (CSEKO) mice compared to eNOS knock out (eNOSKO) and wild type (WT) mice during hind limb ischemia. Method: Permanent unilateral hind limb ischemia was induced in 12-week-old CSE KO, eNOS KO, and WT mice and studied until day 21. Tissue perfusion was measured using indicator dye blush rates with the SPY Imager system over time along with laser doppler flowmetry. Temporal development of arterial remodeling was also observed using SPY imaging, and vessel number, length and branch morphometry determined over time. Microfil vascular casting was performed to further examine the number of collaterals in ischemic muscles at the end of the study. Histological arteriogenesis was evaluated by vascular smooth muscle actin (SMA) positive vessel density with dual fluorescence staining of anti-CD31 (endothelial positive cell) and anti-α-SMA antibodies. Results: Tissue perfusion was significantly impaired in CSE KO and eNOS KO mice compared to WT mice at different time points throughout the study period. Both CSE KO and eNOS KO mice showed significantly less blush rate than WT mice. SMA positive vessel density was also significantly less in CSE KO and eNOS KO mice than that in WT mice. Conclusion: CSE generated H 2 S and eNOS derived NO play important roles in regulating ischemic arterial remodeling as demonstrated in our studies. The mechanism of impaired arteriogenesis in both mutant mice and the interaction between these two gasotransmitters has yet to be elucidated.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 217-217
Author(s):  
Ivana Rosova ◽  
Jan A. Nolta

Abstract Disorders such as peripheral artery disease cause hypoxic areas in tissues. Work from our group and others shows that stem cells appear to have innate mechanisms to respond to hypoxic conditions by migrating to the region of damage, and releasing trophic factors which initiate regeneration. Many tissues activate hepatocyte growth factor (HGF) as a response to ischemic injury. Multiple progenitor cell types express cMet, an HGF receptor. Mesenchymal stem cells (MSC) have been shown to improve regeneration of injured tissues in vivo, but their mechanisms of homing to the site of injury remain unclear. In the current studies we examined the potential for human MSC to repair injury caused by hind limb ischemia in immune deficient mice. We observed that hypoxic pre-conditioning of MSC upregulated expression of cMet, which could render the MSC more responsive to active HGF present at the site of ischemic injury. We first analyzed muscle lysates from mice that had undergone hind limb ischemia, vs sham-operated controls. ELISA results demonstrated that although a sham surgery caused a slight elevation in HGF levels 12 to 48 hours post surgery, ischemia caused a steady increase in HGF secretion from 12 hours to 48 hours post surgery. These data suggested that HGF might play a role in recruiting c-met+ MSC to the injury area. We next subjected primary human MSC to a 24-hr preconditioning in hypoxic (2 to 3% oxygen- actually tissue normoxia) vs. normoxic (21% oxygen, most commonly used in the incubator) conditions. MSC upregulated cMet in hypoxic conditions and then responded more robustly to HGF stimulation by signaling through cMet. Hypoxic pre-conditioning also caused signaling through a pro-survival Akt pathway, possibly improving the survival potential of MSC as they migrate in vivo. We next asked whether MSC are more motile in hypoxia. MSC were cultured in hypoxic or normoxic conditions +/− 25ng/ml HGF. While both HGF alone and a combination of hypoxia and HGF increased the cell migration capacity, treatment with hypoxia alone caused MSC to be the most migratory. These results suggest that hypoxic pre-conditioning may help MSC to migrate to the site of injury, while high active HGF levels in the tissue will hold the stem cells at the site of damage. Finally, to address the question of whether hypoxic pre-conditioning of MSC improves their tissue regeneration ability, we cultured them in hypoxic vs. normoxic conditions for 24 hrs and then transplanted them into NOD/SCID/B2m null mice that had undergone hind limb ischemia surgery one day prior to the transplant. Laser Doppler imaging showed significantly better blood flow recovery in the limbs of injured mice that were treated with pre-conditioned MSC, as compared to the saline control group. Mice that had received hypoxic pre-conditioned MSC improved bloodflow to the injured limb more rapidly than those transplanted with normoxic MSC, with a significant difference observed at day 5, demonstrating that hypoxic pre-conditioning increased the therapeutic potential of MSC. In summary, our data confirm that a 24 hour hypoxic pre-conditioning in vitro prior to transplantation improves the therapeutic potential of MSC, through activation of the pro-survival Akt pathway, upregulation of cMet, which allows them to be more responsive to the HGF activated at the site of ischemic injury, and an increased motility that allows them to more rapidly reach the area of injury.


2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Yosuke Watanabe ◽  
Colin Murdoch ◽  
Richard Cohen ◽  
Reiko Matsui

2008 ◽  
Vol 28 (2) ◽  
pp. 290-295 ◽  
Author(s):  
Craig L. Duvall ◽  
Daiana Weiss ◽  
Scott T. Robinson ◽  
Fadi M.F. Alameddine ◽  
Robert E. Guldberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document