Water infiltration and soil water content in claypan soils influenced by agroforestry and grass buffers compared to row crop management

2016 ◽  
Vol 90 (5) ◽  
pp. 839-860 ◽  
Author(s):  
Handan Sahin ◽  
S. H. Anderson ◽  
R. P. Udawatta
2021 ◽  
Author(s):  
Chengpeng Sun ◽  
Wenzhi Zhao ◽  
Hu Liu ◽  
Yongyong Zhang ◽  
Hong Zhou

<p>Textural layering of soil plays an important role in distributing and regulating resources for plants in many semiarid and arid landscapes. However, the spatial patterns of textural layering and the potential effects on soil hydrology and water regimes are poorly understood, especially in arid sandy soil environments like the desert-oasis ecotones in northwestern China. This work aims to determine the distribution of textural layered soils, analyze the effects of different soil-textural configurations on water regimes, and evaluate which factors affect soil water infiltration and retention characteristics in such a desert-oasis ecotone. We measured soil water content and mineral composition in 87 soil profiles distributed along 3 transects in the study area. Constant-head infiltration experiments were conducted at 9 of the soil profiles with different texture configurations. The results showed that textural layered soils were patchily but extensively distributed throughout the study area (with a combined surface area percentage of about 84%). Soil water content in the profiles ranged from 0.002 to 0.27 g/cm<sup>3</sup> during the investigation period, and significantly and positively correlated with the thickness of a medium-textured (silt or silt loam) layer (<em>P</em> < 0.001). The occurrence of a medium-textured layer increased field capacity (FC) and wilting point (WP), and decreased available water-holding capacity in soil profiles. Burial depth of the medium-textured layer had no clear effects on water retention properties, but the layer thickness tended to. In textural layered soils, smaller water infiltration rate and cumulative infiltration, and shallower depths of wetting fronts were detected, compared with homogeneous sand profiles. The thickness and burial depth of medium-textured layers had obvious effects on infiltration, but the magnitude of the effects depended on soil texture configuration. The revealed patterns of soil textural layering and the potential effects on water regimes may provide new insight into the sustainable management of rainfed vegetation in the desert-oasis ecotones of arid northwestern China and other regions with similar environments around the world.</p>


2011 ◽  
Vol 68 (3) ◽  
pp. 285-294 ◽  
Author(s):  
Carlos Rogério de Mello ◽  
Léo Fernandes Ávila ◽  
Lloyd Darrell Norton ◽  
Antônio Marciano da Silva ◽  
José Márcio de Mello ◽  
...  

Soil water content is essential to understand the hydrological cycle. It controls the surface runoff generation, water infiltration, soil evaporation and plant transpiration. This work aims to analyze the spatial distribution of top soil water content and to characterize the spatial mean and standard deviation of top soil water content over time in an experimental catchment located in the Mantiqueira Range region, state of Minas Gerais, Brazil. Measurements of top soil water content were carried out every 15 days, between May/2007 and May/2008. Using time-domain reflectometry (TDR) equipment, 69 points were sampled in the top 0.2 m of the soil profile. Geostatistical procedures were applied in all steps of the study. First, the spatial continuity was evaluated, and the experimental semi-variogram was modeled. For the development of top soil water content maps over time a co-kriging procedure was used having the slope as a secondary variable. Rainfall regime controlled the top soil water content during the wet season. Land use was also another fundamental local factor. The spatial standard deviation had low values under dry conditions, and high values under wet conditions. Thus, more variability occurs under wet conditions.


2020 ◽  
Author(s):  
Roberto Passalacqua ◽  
Rossella Bovolenta ◽  
Bianca Federici ◽  
Alessandro Iacopino

<p>Soil water content is often a landslide’s trigger factor, in particular the shallow ones. Although there is no simple relationship between the water content into the soil and the hydraulic conditions of the slopes at the depths at which the landslides develop, the knowledge of the actual soil moisture is fundamental for the study of landslides, thus, it should be monitored.<br>The LAMP (LAndslide Monitoring and Predicting) system is employed in the INTERREG-ALCOTRA project called AD-VITAM. LAMP (Bovolenta et al., 2016) was yet formulated for the analysis and forecasting of landslides triggered by rain. It adopts a physically based Integrated Hydrological Geotechnical (IHG) model (Passalacqua et al., 2016) and is implemented in GIS. In this Project, the IHG model is fed by data measured using a Wireless Sensor Network (WSN), this formed by low-cost and self-sufficient sensors. The WSN may gather rainfall, temperature, surface’s displacement data (these by mass-market GNSS receivers in RTK) and, in this case, soil water content (by capacitive sensors).<br>The WaterScout SM100 capacitive sensors were lab-analyzed then, recognized as satisfactory, installed on-site together with their related equipment. These sensors connect to a “Sensor Pup”, which has four available channels; therefore, four sensors are installed at each node, at different depths from ground-level, in order to achieve a vertical soil-moisture profile and the rate of infiltration.<br>The selection of the most suitable spots for the water content soil-sensors’ installations depends on the presence of shallow soil layers and of the radio signal emission-reception’s too.<br>The sensors may be set up both in vertical or horizontal direction. In general, the vertical installation is preferable. This implies the creation of small adjacent vertical holes, each one reaching a different depth, where the sensors are singularly pushed. Alternatively, the horizontal one may be adopted, by the opening of a small trench where the sensors are manually inserted at different depths, along a quasi-vertical vertical line. The full contact between the soil and the sensors is always verified, immediately after the installation, using a directly connected FieldScout reader to any single sensor. Furthermore, it is necessary to protect the emerging cables and to avoid preferential ways for water infiltration along the wiring lines.<br>The monitoring networks, installed at the two Italian sites of Mendatica and Ceriana, are currently providing informations in real-time. The data acquired at five nodes, distributed at each of these two sites (40 sensors in total), are currently relayed on a specific web-portal by a GSM connected Retriever-Modem, marking the evolutions of soil moisture profiles at depths between 10 and 85 cm from ground level: these continuous data allow the analysis of the infiltration and evapotranspiration phenomena. Moreover, a correlation between the soil moisture contents and the local displacements is made possible. Finally, a specific calibration of the SM100 sensors’ in relation to the on-site soil types is in progress.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Chengpeng Sun ◽  
Wenzhi Zhao ◽  
Hu Liu ◽  
Yongyong Zhang ◽  
Hong Zhou

Textural layering of soil plays an important role in distributing and regulating resources for plants in many semiarid and arid landscapes. However, the spatial patterns of textural layering and the potential effects on soil hydrology and water regimes are poorly understood, especially in arid sandy soil environments like the desert-oasis ecotones in northwestern China. This work aims to determine the distribution of textural layered soils, analyze the effects of different soil-textural configurations on water regimes, and evaluate which factors affect soil water infiltration and retention characteristics in such a desert-oasis ecotone. We measured soil water content and mineral composition in 87 soil profiles distributed along three transects in the study area. Constant-head infiltration experiments were conducted at 9 of the soil profiles with different texture configurations. The results showed that textural layered soils were patchily but extensively distributed throughout the study area (with a combined surface area percentage of about 84%). Soil water content in the profiles ranged from 0.002 to 0.27 g/cm3 during the investigation period, and significantly and positively correlated with the thickness of a medium-textured (silt or silt loam) layer (p < 0.001). The occurrence of a medium-textured layer increased field capacity and wilting point and decreased available water-holding capacity in soil profiles. Burial depth of the medium-textured layer had no clear effects on water retention properties, but the layer thickness tended to. In textural layered soils, smaller water infiltration rate and cumulative infiltration, and shallower depths of wetting fronts were detected, compared with homogeneous sand profiles. The thickness and burial depth of medium-textured layers had obvious effects on infiltration, but the magnitude of the effects depended on soil texture configuration. The revealed patterns of soil textural layering and the potential effects on water regimes may provide new insight into the sustainable management of rainfed vegetation in the desert-oasis ecotones of arid northwestern China and other regions with similar environments around the world.


2011 ◽  
Vol 21 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Marco Bittelli

Soil water content (SWC) is a soil property that plays a crucial role in a large variety of biophysical processes, such as seed germination, plant growth, and plant nutrition. SWC affects water infiltration, redistribution, percolation, evaporation, and plant transpiration. Indeed, the quantification of SWC is necessary for a variety of important applications in horticultural systems, such as optimization of irrigation volumes, fertilization, and soil-water-budget computations. In recent decades, a substantial number of different experimental methods have been developed to determine the SWC, and a large body of knowledge is now available on theory and applications. In this review, the main techniques used to determine the SWC are discussed, first by describing the physical principles behind the most popular methods and then by addressing how the various spatial scales might affect the different methodologies when applied.


1993 ◽  
Vol 118 (5) ◽  
pp. 580-586 ◽  
Author(s):  
J. Girona ◽  
M. Mata ◽  
D.A. Goldhamer ◽  
R.S. Johnson ◽  
T.M. DeJong

Seasonal patterns of soil water content and diurnal leaf water potential (LWP), stomatal conductance(gs), and net CO2 assimilation (A) were determined in a high-density peach [Prunus persica(L) Batsch cv. Cal Red] subjected to regulated deficit irrigation scheduling. The regulated deficit irrigation treatment caused clear differences in soil water content and predawn LWP relative to control irrigation treatments. Treatment differences in midday LWP, gs, and A were also significant, but not as distinct as differences in predawn LWP. Leaves on trees subject of the deficit irrigation treatment were photosynthetically more water-use-efficient during the latter part of the stress period than were the nonstressed trees. Midday LWP and gs, on trees that received the regulated deficit irrigation treatment did not recover to control treatment values until more than 3 weeks after full irrigation was resumed at the beginning of state III of fruit growth, because of water infiltration problems in the dry soil caused by the deficit irrigation. The regulated deficit irrigation treatment caused only a 8% reduction in trunk growth relative to the control, but resulted in a 40% savings in irrigation requirements.


Irriga ◽  
1998 ◽  
Vol 3 (2) ◽  
pp. 48-55
Author(s):  
Edivania Dos Santos ◽  
Irae Amaral Guerrini

DETERMINAÇÃO EXPERIMENTAL DA DIMENSÃO FRACTAL DO MOVIMENTO DA ÁGUA NO SOLO EM FLUXOS HORIZONTAIS  Edivânia dos Santos Departamento de Engenharia Rural - FCA - UNESPCaixa Postal 237 – CEP 18603-970 – Botucatu – SP Ivan Amaral GuerriniDepartamento de Física e Biofísica - IB – UNESP - Botucatu  1 RESUMO Em busca de novas tecnologias para produção agrícola, muitos esforços tem sido feitos no intuito de se conhecer importantes fenômenos da natureza como os que envolvem água, solo e planta.O movimento da água no solo como um processo de difusão pode ser visualizado também como um fenômeno fractal, associando o expoente n da equação x = l . t n  ao expoente de Hurst e caracterizando o fenômeno como Movimento Browniano fracionário.Este trabalho estudou a relação da posição em relação ao tempo para todo o espectro de umidade do solo durante o fenômeno de infiltração da água no solo, em colunas horizontais, em laboratório, com pressão de entrada da água ao nível zero, utilizando a equação acima .Para a medição da umidade utilizou-se a técnica da atenuação da radiação gama, sendo que os ajustes dos dados de umidade em função do tempo foram feitos pelo modelo Weibull. UNITERMOS : Fractal, água no solo, infiltração.  SANTOS dos, E., GUERRINI, I. A.  Experimental determination of the fractal dimension of the soil-water content in the horizontal flux.  2 ABSTRACT Searching for new tecnologies for agricultural production many efforts has been made to know important phenomena in nature involve water, soil and plant.The moviment soil-water how as a diffusion process can be visualized, as a fractal phenomenon, associating the exponente n of equation x = l . t n  to the Hurst exponent and caracterizing the phenomenon as a Bronwnian Fractional Motion.This paper studied the relation betwen the position and the time, for the full range water contents during soil-water infiltration, in horizontal columns, in the laboratory with water pressure entrance, utilizing the above equation. To measure soil water content the radiation gamma attenuation, was utilized the water content transients were fitted by the Weibull model. KEI-WORDS: Fractal, soil-water and infiltration.


Sign in / Sign up

Export Citation Format

Share Document