Soil water contents and displacements monitoring, integrated into a Hydrological-Geotechnical Model for the evaluation of large-scale susceptibility to landslides triggered by rainfalls

Author(s):  
Roberto Passalacqua ◽  
Rossella Bovolenta ◽  
Bianca Federici ◽  
Alessandro Iacopino

<p>Soil water content is often a landslide’s trigger factor, in particular the shallow ones. Although there is no simple relationship between the water content into the soil and the hydraulic conditions of the slopes at the depths at which the landslides develop, the knowledge of the actual soil moisture is fundamental for the study of landslides, thus, it should be monitored.<br>The LAMP (LAndslide Monitoring and Predicting) system is employed in the INTERREG-ALCOTRA project called AD-VITAM. LAMP (Bovolenta et al., 2016) was yet formulated for the analysis and forecasting of landslides triggered by rain. It adopts a physically based Integrated Hydrological Geotechnical (IHG) model (Passalacqua et al., 2016) and is implemented in GIS. In this Project, the IHG model is fed by data measured using a Wireless Sensor Network (WSN), this formed by low-cost and self-sufficient sensors. The WSN may gather rainfall, temperature, surface’s displacement data (these by mass-market GNSS receivers in RTK) and, in this case, soil water content (by capacitive sensors).<br>The WaterScout SM100 capacitive sensors were lab-analyzed then, recognized as satisfactory, installed on-site together with their related equipment. These sensors connect to a “Sensor Pup”, which has four available channels; therefore, four sensors are installed at each node, at different depths from ground-level, in order to achieve a vertical soil-moisture profile and the rate of infiltration.<br>The selection of the most suitable spots for the water content soil-sensors’ installations depends on the presence of shallow soil layers and of the radio signal emission-reception’s too.<br>The sensors may be set up both in vertical or horizontal direction. In general, the vertical installation is preferable. This implies the creation of small adjacent vertical holes, each one reaching a different depth, where the sensors are singularly pushed. Alternatively, the horizontal one may be adopted, by the opening of a small trench where the sensors are manually inserted at different depths, along a quasi-vertical vertical line. The full contact between the soil and the sensors is always verified, immediately after the installation, using a directly connected FieldScout reader to any single sensor. Furthermore, it is necessary to protect the emerging cables and to avoid preferential ways for water infiltration along the wiring lines.<br>The monitoring networks, installed at the two Italian sites of Mendatica and Ceriana, are currently providing informations in real-time. The data acquired at five nodes, distributed at each of these two sites (40 sensors in total), are currently relayed on a specific web-portal by a GSM connected Retriever-Modem, marking the evolutions of soil moisture profiles at depths between 10 and 85 cm from ground level: these continuous data allow the analysis of the infiltration and evapotranspiration phenomena. Moreover, a correlation between the soil moisture contents and the local displacements is made possible. Finally, a specific calibration of the SM100 sensors’ in relation to the on-site soil types is in progress.</p>

2021 ◽  
Author(s):  
Chengpeng Sun ◽  
Wenzhi Zhao ◽  
Hu Liu ◽  
Yongyong Zhang ◽  
Hong Zhou

<p>Textural layering of soil plays an important role in distributing and regulating resources for plants in many semiarid and arid landscapes. However, the spatial patterns of textural layering and the potential effects on soil hydrology and water regimes are poorly understood, especially in arid sandy soil environments like the desert-oasis ecotones in northwestern China. This work aims to determine the distribution of textural layered soils, analyze the effects of different soil-textural configurations on water regimes, and evaluate which factors affect soil water infiltration and retention characteristics in such a desert-oasis ecotone. We measured soil water content and mineral composition in 87 soil profiles distributed along 3 transects in the study area. Constant-head infiltration experiments were conducted at 9 of the soil profiles with different texture configurations. The results showed that textural layered soils were patchily but extensively distributed throughout the study area (with a combined surface area percentage of about 84%). Soil water content in the profiles ranged from 0.002 to 0.27 g/cm<sup>3</sup> during the investigation period, and significantly and positively correlated with the thickness of a medium-textured (silt or silt loam) layer (<em>P</em> < 0.001). The occurrence of a medium-textured layer increased field capacity (FC) and wilting point (WP), and decreased available water-holding capacity in soil profiles. Burial depth of the medium-textured layer had no clear effects on water retention properties, but the layer thickness tended to. In textural layered soils, smaller water infiltration rate and cumulative infiltration, and shallower depths of wetting fronts were detected, compared with homogeneous sand profiles. The thickness and burial depth of medium-textured layers had obvious effects on infiltration, but the magnitude of the effects depended on soil texture configuration. The revealed patterns of soil textural layering and the potential effects on water regimes may provide new insight into the sustainable management of rainfed vegetation in the desert-oasis ecotones of arid northwestern China and other regions with similar environments around the world.</p>


2009 ◽  
Vol 6 (5) ◽  
pp. 6425-6454
Author(s):  
H. Stephen ◽  
S. Ahmad ◽  
T. C. Piechota ◽  
C. Tang

Abstract. The Tropical Rainfall Measuring Mission (TRMM) carries aboard the Precipitation Radar (TRMMPR) that measures the backscatter (σ°) of the surface. σ° is sensitive to surface soil moisture and vegetation conditions. Due to sparse vegetation in arid and semi-arid regions, TRMMPR σ° primarily depends on the soil water content. In this study we relate TRMMPR σ° measurements to soil water content (ms) in Lower Colorado River Basin (LCRB). σ° dependence on ms is studied for different vegetation greenness values determined through Normalized Difference Vegetation Index (NDVI). A new model of σ° that couples incidence angle, ms, and NDVI is used to derive parameters and retrieve soil water content. The calibration and validation of this model are performed using simulated and measured ms data. Simulated ms is estimated using Variable Infiltration Capacity (VIC) model whereas measured ms is acquired from ground measuring stations in Walnut Gulch Experimental Watershed (WGEW). σ° model is calibrated using VIC and WGEW ms data during 1998 and the calibrated model is used to derive ms during later years. The temporal trends of derived ms are consistent with VIC and WGEW ms data with correlation coefficient (R) of 0.89 and 0.74, respectively. Derived ms is also consistent with the measured precipitation data with R=0.76. The gridded VIC data is used to calibrate the model at each grid point in LCRB and spatial maps of the model parameters are prepared. The model parameters are spatially coherent with the general regional topography in LCRB. TRMMPR σ° derived soil moisture maps during May (dry) and August (wet) 1999 are spatially similar to VIC estimates with correlation 0.67 and 0.76, respectively. This research provides new insights into Ku-band σ° dependence on soil water content in the arid regions.


Biologia ◽  
2007 ◽  
Vol 62 (5) ◽  
Author(s):  
Horst Gerke ◽  
Rolf Kuchenbuch

AbstractPlants can affect soil moisture and the soil hydraulic properties both directly by root water uptake and indirectly by modifying the soil structure. Furthermore, water in plant roots is mostly neglected when studying soil hydraulic properties. In this contribution, we analyze effects of the moisture content inside roots as compared to bulk soil moisture contents and speculate on implications of non-capillary-bound root water for determination of soil moisture and calibration of soil hydraulic properties.In a field crop of maize (Zea mays) of 75 cm row spacing, we sampled the total soil volumes of 0.7 m × 0.4 m and 0.3 m deep plots at the time of tasseling. For each of the 84 soil cubes of 10 cm edge length, root mass and length as well as moisture content and soil bulk density were determined. Roots were separated in 3 size classes for which a mean root porosity of 0.82 was obtained from the relation between root dry mass density and root bulk density using pycnometers. The spatially distributed fractions of root water contents were compared with those of the water in capillary pores of the soil matrix.Water inside roots was mostly below 2–5% of total soil water content; however, locally near the plant rows it was up to 20%. The results suggest that soil moisture in roots should be separately considered. Upon drying, the relation between the soil and root water may change towards water remaining in roots. Relations depend especially on soil water retention properties, growth stages, and root distributions. Gravimetric soil water content measurement could be misleading and TDR probes providing an integrated signal are difficult to interpret. Root effects should be more intensively studied for improved field soil water balance calculations.


2002 ◽  
Vol 82 (4) ◽  
pp. 855-859 ◽  
Author(s):  
M. L. Leblanc ◽  
D. C. Cloutier ◽  
C. Hamel

A 2-year field study was conducted in corn to determine the influence of rainfall, irrigation and soil water content on common lambsquarters and barnyardgrass emergence. Rainfall or irrigation had no influence on the final weed density and little on the pattern of weed emergence because the soil water content was at or greater than field capacity during the main weed emergence period. Irrigation may hasten the first weed emergence by warming the soil when temperature is limiting for germination. In southwestern Quebec, temperature appears to be the most important factor regulating germination in the spring since soil moisture is normally at field capacity for a long period, in part because of the melting of snow. Key words: Irrigation, weed emergence, soil moisture


2009 ◽  
Vol 16 (1) ◽  
pp. 141-150 ◽  
Author(s):  
M. Gebremichael ◽  
R. Rigon ◽  
G. Bertoldi ◽  
T. M. Over

Abstract. By providing continuous high-resolution simulations of soil moisture fields, distributed hydrologic models could be powerful tools to advance the scientific community's understanding of the space-time variability and scaling characteristics of soil moisture fields. However, in order to use the soil moisture simulations from hydrologic models with confidence, it is important to understand whether the models are able to represent in a reliable way the processes regulating soil moisture variability. In this study, a comparison of the scaling characteristics of spatial soil moisture fields derived from a set of microwave radiometer observations from the Southern Great Plains 1997 experiment and corresponding simulations using the distributed hydrologic model GEOtop is performed through the use of generalized variograms. Microwave observations and model simulations are in agreement with respect to suggesting the existence of a scale-invariance property in the variograms of spatial soil moisture fields, and indicating that the scaling characteristics vary with changes in the spatial average soil water content. However, observations and simulations give contradictory results regarding the relationship between the scaling parameters (i.e. spatial organization) and average soil water content. The drying process increased the spatial correlation of the microwave observations at both short and long separation distances while increasing the rate of decay of correlation with distance. The effect of drying on the spatial correlation of the model simulations was more complex, depending on the storm and the simulation examined, but for the largest storm in the simulation most similar to the observations, drying increased the long-range correlation but decreased the short-range. This is an indication that model simulations, while reproducing correctly the total streamflow at the outlet of the watershed, may not accurately reproduce the runoff production mechanisms. Consideration of the scaling characteristics of spatial soil moisture fields can therefore serve as a more intensive means for validating distributed hydrologic models, compared to the traditional approach of only comparing the streamflow hydrographs.


2014 ◽  
Vol 6 (4) ◽  
pp. 125 ◽  
Author(s):  
Anne Karuma ◽  
Peter Mtakwa ◽  
Nyambilila Amuri ◽  
Charles K. Gachene ◽  
Patrick Gicheru

Soil water conservation through tillage is one of the appropriate ways of addressing soil moisture deficit in rainfed agriculture. This study evaluated the effects of tillage practices on soil moisture conservation and crop yields in Mwala District, Eastern Kenya during the long rains (LR) and short rains (SR) of 2012/13. Six tillage systems: Disc plough (MB), Disc plough and harrowing (MBH), Ox-ploughing (OX), Subsoiling – ripping (SR), Hand hoe and Tied Ridges (HTR) and Hand hoe only (H) and, three cropping systems namely, sole maize, sole bean and maize - bean intercrop, were investigated in a split-plot design with four replicates. Data on soil water content was monitored at different weeks after planting and the crop yields at end of each growing season. A three-season average shows that soil water content and crop yields were higher in conventional tillage methods compared to the conservation tillage methods. Long term tillage experiments are thus required at different locations, under various environmental and soil conditions to validate the study findings.


2020 ◽  
Vol 63 (1) ◽  
pp. 141-152
Author(s):  
Jasreman Singh ◽  
Derek M. Heeren ◽  
Daran R. Rudnick ◽  
Wayne E. Woldt ◽  
Geng Bai ◽  
...  

HighlightsCapacitance-based electromagnetic soil moisture sensors were tested in disturbed and undisturbed soils.The uncertainty in estimation of soil water depth was lower using the undisturbed soil sample calibrations.The uncertainty in estimation of soil water depletion was lower than the uncertainty in volumetric water content.Undisturbed calibration of water depletion quantifies water demand with better precision and avoids over-watering.Abstract. The physical properties of soil, such as structure and texture, can affect the performance of an electromagnetic sensor in measuring soil water content. Historically, calibrations have been performed on repacked samples in the laboratory and on soils in the field, but little research has been done on laboratory calibrations with intact (undisturbed) soil cores. In this study, three replications each of disturbed and undisturbed soil samples were collected from two soil texture classes (Yutan silty clay loam and Fillmore silt loam) at a field site in eastern Nebraska to investigate the effects of soil structure and texture on the precision of a METER Group GS-1 capacitance-based sensor calibration. In addition, GS-1 sensors were installed in the field near the soil collection sites at three depths (0.15, 0.46, and 0.76 m). The soil moisture sensor had higher precision in the undisturbed laboratory setup, as the undisturbed calibration had a better correlation [slope closer to one, R2undisturbed (0.89) > R2disturbed (0.73)] than the disturbed calibrations for the Yutan and Fillmore texture classes, and the root mean square difference using the laboratory calibration (RMSDL) was higher for pooled disturbed samples (0.053 m3 m-3) in comparison to pooled undisturbed samples (0.023 m3 m-3). The uncertainty in determination of volumetric water content (?v) was higher using the factory calibration (RMSDF) in comparison to the laboratory calibration (RMSDL) for the different soil structures and texture classes. In general, the uncertainty in estimation of soil water depth was greater than the uncertainty in estimation of soil water depletion by the sensors installed in the field, and the uncertainties in estimation of depth and depletion were lower using the calibration developed from the undisturbed soil samples. The undisturbed calibration of soil water depletion would determine water demand with better precision and potentially avoid over-watering, offering relief from water shortages. Further investigation of sensor calibration techniques is required to enhance the applicability of soil moisture sensors for efficient irrigation management. Keywords: Calibration, Capacitance, Depletion, Irrigation, Precision, Sensor, Soil water content, Structure, Uncertainty.


2011 ◽  
Vol 68 (3) ◽  
pp. 285-294 ◽  
Author(s):  
Carlos Rogério de Mello ◽  
Léo Fernandes Ávila ◽  
Lloyd Darrell Norton ◽  
Antônio Marciano da Silva ◽  
José Márcio de Mello ◽  
...  

Soil water content is essential to understand the hydrological cycle. It controls the surface runoff generation, water infiltration, soil evaporation and plant transpiration. This work aims to analyze the spatial distribution of top soil water content and to characterize the spatial mean and standard deviation of top soil water content over time in an experimental catchment located in the Mantiqueira Range region, state of Minas Gerais, Brazil. Measurements of top soil water content were carried out every 15 days, between May/2007 and May/2008. Using time-domain reflectometry (TDR) equipment, 69 points were sampled in the top 0.2 m of the soil profile. Geostatistical procedures were applied in all steps of the study. First, the spatial continuity was evaluated, and the experimental semi-variogram was modeled. For the development of top soil water content maps over time a co-kriging procedure was used having the slope as a secondary variable. Rainfall regime controlled the top soil water content during the wet season. Land use was also another fundamental local factor. The spatial standard deviation had low values under dry conditions, and high values under wet conditions. Thus, more variability occurs under wet conditions.


Geosciences ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 238
Author(s):  
Kenta Iwasaki ◽  
Makoto Tamura ◽  
Hirokazu Sato ◽  
Kazuhiko Masaka ◽  
Daisuke Oka ◽  
...  

The development of a method to easily investigate the spatial distribution of soil moisture and soil hardness in tree windbreaks is necessary because these windbreaks often decline due to inappropriate soil moisture condition and soil compaction. This research examined the applicability of ground-penetrating radar (GPR) and a combined penetrometer–moisture probe (CPMP) for evaluating the spatial distribution of soil moisture and soil hardness in four windbreaks with different soil characteristics. A GPR-reflecting interface was observed at a less permeable layer in a coastal windbreak and at a depth affected by soil compaction in an inland windbreak with andosol. The spatial distribution of the groundwater table could also be evaluated by examining the attenuation of GPR reflection in a coastal windbreak. In contrast, GPR was not applicable in an inland windbreak with peat because of high soil water content near the soil surface. The CPMP could detect vertical distributions of soil hardness and soil water content regardless of soil type. The CPMP was useful for interpreting GPR profiles, and GPR was useful for interpolating the information about the horizontal distribution of soil moisture and soil hardness between survey points made with the CPMP. Thus, the combination of GPR and a CPMP is ideal for examining the two-dimensional spatial distribution of soil moisture and soil hardness at windbreaks with soils for which both methods are applicable.


1988 ◽  
Vol 18 (4) ◽  
pp. 427-434 ◽  
Author(s):  
Richard Barry ◽  
André P. Plamondon ◽  
Jean Stein

An analysis of hydrologic soil properties and the prediction of volumetric soil water content during four summers have been done for a site located in the balsam fir (Abiesbalsamea (L.) Mill.) forest of the Lac Laflamme watershed. The hydrologic properties were used to identify three different soil layers, THIRSTY, a soil moisture model using the Penman evapotranspiration formula, was applied to predict daily volumetric water content of these layers. Predictions of soil moisture with the calibrated model were close to the observed data for the median layer (20–60 cm from the soil surface) and less accurate for the surface layer (0–20 cm) where important transpiration activities take place. The model appeared unreliable for predicting soil water content of the bottom layer (60–100 cm) which was often saturated by groundwater. The calibration of the model required modifications of the observed values of the available water content at field capacity and the relative root density factor and was adjusted with the crop coefficient of the Penman evapotranspiration formula. These modifications of observed physical parameters raise the question of the feasibility of extrapolating the model to other sites without extensive calibration. The high sensitivity to variations of the crop coefficient applied to the evapotranspiration equation indicated that a more physically based transpiration model, supported by field-oriented process studies, would be required to improve the model's performance.


Sign in / Sign up

Export Citation Format

Share Document