scholarly journals MP01-02 SKILL ACQUISITION AND COGNITIVE LOAD, UTILIZING THREE DIFFERENT FORMS OF EXPERT-BASED FEEDBACK DURING SIMULATION-BASED ROBOTIC SKILLS TRAINING: A COMPARATIVE ANALYSIS

2018 ◽  
Vol 199 (4S) ◽  
Author(s):  
Prabhakar Mithal ◽  
Brett Teplitz ◽  
Yongsoo Joo ◽  
Noorullah Maqsoodi ◽  
Karen Chong ◽  
...  
2013 ◽  
Vol 7 (11-12) ◽  
pp. 430 ◽  
Author(s):  
Kirsten Foell ◽  
Antonio Finelli ◽  
Kazuhiro Yasufuku ◽  
Marcus Q. Bernardini ◽  
Thomas K Waddell ◽  
...  

Purpose: Simulation-based training improves clinical skills, while minimizing the impact of the educational process on patient care. We present results of a pilot multidisciplinary, simulation-based robotic surgery basic skills training curriculum (BSTC) for robotic novices.Methods: A 4-week, simulation-based, robotic surgery BSTC was offered to the Departments of Surgery and Obstetrics & Gynecology (ObGyn) at the University of Toronto. The course consisted of various instructional strategies: didactic lecture, self-directed online training modules, introductory hands-on training with the da Vinci robot (dVR) (Intuitive Surgical Inc., Sunnyvale, CA), and dedicated training on the da Vinci Skills Simulator (Intuitive Surgical Inc., Sunnyvale, CA) (dVSS). A third of trainees participated in competency-based dVSS training, all others engaged in traditional time-based training. Pre- and post-course skill testing was conducted on the dVR using 2 standardized skill tasks: ring transfer (RT) and needle passing (NP). Retention of skills was assessed at 5 months post-BSTC.Results: A total of 37 participants completed training. The mean task completion time and number of errors improved significantly post-course on both RT (180.6 vs. 107.4 sec, p < 0.01 and 3.5 vs. 1.3 sec, p < 0.01, respectively) and NP (197.1 vs. 154.1 sec, p < 0.01 and 4.5 vs. 1.8 sec, p = 0.04, respectively) tasks. No significant difference in performance was seen between specialties. Competency-based training was associated with significantly better post-course performance. The dVSS demonstrated excellent face validity.Conclusions: The implementation of a pilot multidisciplinary, simulation-based robotic surgery BSTC revealed significantly improved basic robotic skills among novice trainees, regardless of specialty or level of training. Competency-based training was associated with significantly better acquisition of basic robotic skills.


CJEM ◽  
2009 ◽  
Vol 11 (06) ◽  
pp. 535-539 ◽  
Author(s):  
Trevor S. Langhan ◽  
Ian J. Rigby ◽  
Ian W. Walker ◽  
Daniel Howes ◽  
Tyrone Donnon ◽  
...  

ABSTRACT Objective: Residents must become proficient in a variety of procedures. The practice of learning procedural skills on patients has come under ethical scrutiny, giving rise to the concept of simulation-based medical education. Resident training in a simulated environment allows skill acquisition without compromising patient safety. We assessed the impact of a simulation-based procedural skills training course on residents' competence in the performance of critical resuscitation procedures. Methods: We solicited self-assessments of the knowledge and clinical skills required to perform resuscitation procedures from a cross-sectional multidisciplinary sample of 28 resident study participants. Participants were then exposed to an intensive 8-hour simulation-based training program, and asked to repeat the self-assessment questionnaires on completion of the course, and again 3 months later. We assessed the validity of the self-assessment questionnaire by evaluating participants' skills acquisition through an Objective Structured Clinical Examination station. Results: We found statistically significant improvements in participants' ratings of both knowledge and clinical skills during the 3 self-assessment periods (p &lt; 0.001). The participants' year of postgraduate training influenced their self-assessment of knowledge (F 2,25 = 4.91, p &lt; 0.01) and clinical skills (F 2,25 = 10.89, p &lt; 0.001). At the 3-month follow-up, junior-level residents showed consistent improvement from their baseline scores, but had regressed from their posttraining measures. Senior-level residents continued to show further increases in their assessments of both clinical skills and knowledge beyond the simulation-based training course. Conclusion: Significant improvement in self-assessed theoretical knowledge and procedural skill competence for residents can be achieved through participation in a simulation-based resuscitation course. Gains in perceived competence appear to be stable over time, with senior learners gaining further confidence at the 3-month follow-up. Our findings support the benefits of simulation-based training for residents.


2015 ◽  
Vol 20 (5) ◽  
pp. 1237-1253 ◽  
Author(s):  
Faizal A. Haji ◽  
Rabia Khan ◽  
Glenn Regehr ◽  
James Drake ◽  
Sandrine de Ribaupierre ◽  
...  

2018 ◽  
Author(s):  
Tamer Abdel Moaein ◽  
Chirsty Tompkins ◽  
Natalie Bandrauk ◽  
Heidi Coombs-Thorne

BACKGROUND Clinical simulation is defined as “a technique to replace or amplify real experiences with guided experiences, often immersive in nature, that evoke or replicate substantial aspects of the real world in a fully interactive fashion”. In medicine, its advantages include repeatability, a nonthreatening environment, absence of the need to intervene for patient safety issues during critical events, thus minimizing ethical concerns and promotion of self-reflection with facilitation of feedback [1] Apparently, simulation based education is a standard tool for introducing procedural skills in residency training [3]. However, while performance is clearly enhanced in the simulated setting, there is little information available on the translation of these skills to the actual patient care environment (transferability) and the retention rates of skills acquired in simulation-based training [1]. There has been significant interest in using simulation for both learning and assessment [2]. As Canadian internal medicine training programs are moving towards assessing entrustable professional activities (EPA), simulation will become imperative for training, assessment and identifying opportunities for improvement [4, 5]. Hence, it is crucial to assess the current state of skill learning, acquisition and retention in Canadian IM residency training programs. Also, identifying any challenges to consolidating these skills. We hope the results of this survey would provide material that would help in implementing an effective and targeted simulation-based skill training (skill mastery). OBJECTIVE 1. Appraise the status and impact of existing simulation training on procedural skill performance 2. Identify factors that might interfere with skill acquisition, consolidation and transferability METHODS An electronic bilingual web-based survey; Fluid survey platform utilized, was designed (Appendix 1). It consists of a mix of closed-ended, open-ended and check list questions to examine the attitudes, perceptions, experiences and feedback of internal medicine (IM) residents. The survey has been piloted locally with a sample of five residents. After making any necessary corrections, it will be distributed via e-mail to the program directors of all Canadian IM residency training programs, then to all residents registered in each program. Two follow up reminder e-mails will be sent to all participating institutions. Participation will be voluntarily and to keep anonymity, there will be no direct contact with residents and survey data will be summarized in an aggregate form. SPSS Software will be used for data analysis, and results will be shared with all participating institutions. The survey results will be used for display and presentation purposes during medical conferences and forums and might be submitted for publication. All data will be stored within the office of internal medicine program at Memorial University for a period of five years. Approval of Local Research Ethics board (HREB) at Memorial University has been obtained. RESULTS Pilot Results Residents confirmed having simulation-based training for many of the core clinical skills, although some gaps persist There was some concern regarding the number of sim sessions, lack of clinical opportunities, competition by other services and lack of bed side supervision Some residents used internet video to fill their training gaps and/or increase their skill comfort level before performing clinical procedure Resident feedback included desire for more corrective feedback, and more sim sessions per skill (Average 2-4 sessions) CONCLUSIONS This study is anticipated to provide data on current practices for skill development in Canadian IM residency training programs. Information gathered will be used to foster a discourse between training programs including discussion of barriers, sharing of solutions and proposing recommendations for optimal use of simulation in the continuum of procedural skills training.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Sally Byford ◽  
Sarah Janssens ◽  
Rachel Cook

Abstract Background Transvaginal ultrasound (TVUS) training opportunities are limited due to its intimate nature; however, TVUS is an important component of early pregnancy assessment. Simulation can bridge this learning gap. Aim To describe and measure the effect of a transvaginal ultrasound simulation programme for obstetric registrars. Materials and methods The transvaginal ultrasound simulation training (TRUSST) curriculum consisted of supported practice using virtual reality transvaginal simulators (ScanTrainer, Medaphor) and communication skills training to assist obstetric registrars in obtaining required competencies to accurately and holistically care for women with early pregnancy complications. Trainee experience of live transvaginal scanning was evaluated with a questionnaire. Programme evaluation was by pre-post self-reported confidence level and objective pre-post training assessment using Objective Structured Assessment of Ultrasound Skills (OSAUS) and modified Royal Australian and New Zealand College of Obstetrics and Gynaecology assessment scores. Quantitative data was compared using paired t tests. Results Fifteen obstetric registrars completed the programme. Numbers of performed live transvaginal ultrasound by trainees were low. Participants reported an increase in confidence level in performing a TVUS following training: mean pre score 1.6/5, mean post score 3/5. Objective assessments improved significantly across both OSAUS and RANZCOG scores following training; mean improvement scores 7.6 points (95% CI 6.2–8.9, p < 0.05) and 32.5 (95% CI 26.4–38.6, p < 0.05) respectively. It was noted that scores for a systematic approach and documentation were most improved: 1.9 (95% CI 1.4–2.5, p < 0.05) and 2.1 (95% CI 1.5–2.7, p < 0.05) respectively. Conclusion The implementation of a simulation-based training curriculum resulted in improved confidence and ability in TVUS scanning, especially with regard to a systematic approach and documentation.


2014 ◽  
Vol 47 (5) ◽  
pp. 812-818 ◽  
Author(s):  
Murat Tavlasoglu ◽  
Ahmet Baris Durukan ◽  
Hasan Alper Gurbuz ◽  
Artan Jahollari ◽  
Adem Guler

Author(s):  
Christopher W. Seder ◽  
Stephen D. Cassivi ◽  
Dennis A. Wigle

Objective Although robotic technology has addressed many of the limitations of traditional videoscopic surgery, robotic surgery has not gained widespread acceptance in the general thoracic community. We report our initial robotic surgery experience and propose a structured, competency-based pathway for the development of robotic skills. Methods Between December 2008 and February 2012, a total of 79 robot-assisted pulmonary, mediastinal, benign esophageal, or diaphragmatic procedures were performed. Data on patient characteristics and perioperative outcomes were retrospectively collected and analyzed. During the study period, one surgeon and three residents participated in a triphasic, competency-based pathway designed to teach robotic skills. The pathway consisted of individual preclinical learning followed by mentored preclinical exercises and progressive clinical responsibility. Results The robot-assisted procedures performed included lung resection (n = 38), mediastinal mass resection (n = 19), hiatal or para-esophageal hernia repair (n = 12), and Heller myotomy (n = 7), among others (n = 3). There were no perioperative mortalities, with a 20% complication rate and a 3% readmission rate. Conversion to a thoracoscopic or open approach was required in eight pulmonary resections to facilitate dissection (six) or to control hemorrhage (two). Fewer major perioperative complications were observed in the later half of the experience. All residents who participated in the thoracic surgery robotic pathway perform robot-assisted procedures as part of their clinical practice. Conclusions Robot-assisted thoracic surgery can be safely learned when skill acquisition is guided by a structured, competency-based pathway.


Sign in / Sign up

Export Citation Format

Share Document