Improving the bandwidth of the transimpedance amplifier based on CS stages in cascode configuration using impedance matching techniques

2016 ◽  
Vol 89 (3) ◽  
pp. 685-691 ◽  
Author(s):  
Jawdat Y. Abu-Taha ◽  
Metin Yazgi
2011 ◽  
Vol 70 (1) ◽  
pp. 91-102 ◽  
Author(s):  
K. Dasgupta ◽  
A. Dutta ◽  
T. K. Bhattacharyya

2017 ◽  
Vol 10 (28) ◽  
pp. 1-16 ◽  
Author(s):  
Sonia Sharma ◽  
C. C. Tripathi ◽  
Rahul Rishi ◽  
◽  
◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 5988
Author(s):  
Jungwoo Seo ◽  
Jae Hee Kim ◽  
Jungsuek Oh

A microstrip-to-slot line-fed miniaturized Vivaldi antenna using semicircular patch embedment is proposed in this study. The conventional Vivaldi antenna has ultrawide bandwidth, but suffers from low gain in the low-frequency band. The proposed antenna topology incorporates the embedment of semicircular patch elements into the side edge of the antenna. This enables the phases of electric fields at both ends of the antenna to be out of phase. Since the distance between the two ends are λL/2 where λL is the wavelength at a low operating frequency, this antenna topology can achieve the constructive addition of electrical fields at the radiating end, leading to gain enhancement at the chosen low frequency. In comparison with the conventional Vivaldi antenna, the proposed antenna has a wider bandwidth from 2.84 to 9.83 GHz. Moreover, the simulated result shows a gain enhancement of 5 dB at low frequency. This cannot be realized by the conventional low-band impedance matching techniques only relying on slotted topologies. The measured results of this proposed antenna with a size of 45 × 40 × 0.8 mm3 are in good agreement with the simulated results.


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Hesheng Cheng ◽  
Jin Zhang ◽  
Hexia Cheng ◽  
Qunli Zhao

A novel compact circular polarization (CP) microstrip antenna is proposed for UHF ultrahigh frequency (UHF) radio frequency identification (RFID) reader applications. The proposed antenna is composed of a corner truncated square-ring radiating patch on a substrate and a vertical slotted ground surrounding four sides of the antenna. A new feeding scheme is designed from flexible impedance matching techniques. The impedance bandwidths for S11<-10 dB and 3 dB axial ratio (AR) bandwidth are 12.1% (794.5–896.5 MHz) and 2.5% (833.5–854.5 MHz), respectively.


Author(s):  
Mohamed Ribate ◽  
Rachid Mandry ◽  
Jamal Zbitou ◽  
Larbi El Abdellaoui ◽  
Ahmed Errkik ◽  
...  

In this paper, the design of a Broadband Power Amplifier for UHF applications is presented. The proposed BPA is based on ATF13876 Agilent active device. The biasing and matching networks both are implemented by using microstrip transmission lines. The input and output matching circuits are designed by combining two broadband matching techniques: a binomial multi-section quarter wave impedance transformer and an approximate transformation of previously designed lumped elements. The proposed BPA shows excellent performances in terms of impedance matching, power gain and unconditionally stability over the operating bandwidth ranging from 1.2 GHz to 3.3 GHz. At 2.2 GHz, the large signal simulation shows a saturated output power of 18.875 dBm with an output 1-dB compression point of 6.5 dBm of input level and a maximum PAE of 36.26%.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1958 ◽  
Author(s):  
Bo Su Kim ◽  
Jae-Hoon Ji ◽  
Hong-Tae Kim ◽  
Sung-Jin Kim ◽  
Jung-Hyuk Koh

As a piezoelectric material, (Bi,Sc)O3-(Pb,Ti)O3 ceramics have been tested and analyzed for sensors and energy harvester applications owing to their relatively high Curie temperature and high piezoelectric coefficient. In this work, we prepared optimized (Bi,Sc)O3-(Pb,Ti)O3 piezoelectric materials through the conventional ceramic process. To increase the output energy, a multilayered structure was proposed and designed, and to obtain the maximum output energy, impedance matching techniques were considered and tested. By varying and measuring the energy harvesting system, we confirmed that the output energies were optimized by varying the load resistance. As the load resistance increased, the output voltage became saturated. Then, we calculated the optimized output power using the electric energy formula. Consequently, we identified the highest output energy of 5.93 µW/cm2 at 3 MΩ for the quadruple-layer harvester and load resistor using the impedance matching system. We characterized and improved the electrical properties of the piezoelectric energy harvesters by introducing impedance matching and performing the modeling of the energy harvesting component. Modeling was conducted for the piezoelectric generator component by introducing the mechanical force dependent voltage sources and load resistors and piezoelectric capacitor connected in parallel. Moreover, the generated output voltages were simulated by introducing an impedance matching technique. This work is designed to explain the modeling of piezoelectric energy harvesters. In this model, the relationship between applied mechanical force and output energy was discussed by employing experimental results and simulation.


Sign in / Sign up

Export Citation Format

Share Document