scholarly journals Multi-objective optimization with an adaptive resonance theory-based estimation of distribution algorithm

2012 ◽  
Vol 68 (4) ◽  
pp. 247-273 ◽  
Author(s):  
Luis Martí ◽  
Jesús García ◽  
Antonio Berlanga ◽  
José M. Molina
2013 ◽  
Vol 21 (1) ◽  
pp. 149-177 ◽  
Author(s):  
Vui Ann Shim ◽  
Kay Chen Tan ◽  
Jun Yong Chia ◽  
Abdullah Al Mamun

Many real-world optimization problems are subjected to uncertainties that may be characterized by the presence of noise in the objective functions. The estimation of distribution algorithm (EDA), which models the global distribution of the population for searching tasks, is one of the evolutionary computation techniques that deals with noisy information. This paper studies the potential of EDAs; particularly an EDA based on restricted Boltzmann machines that handles multi-objective optimization problems in a noisy environment. Noise is introduced to the objective functions in the form of a Gaussian distribution. In order to reduce the detrimental effect of noise, a likelihood correction feature is proposed to tune the marginal probability distribution of each decision variable. The EDA is subsequently hybridized with a particle swarm optimization algorithm in a discrete domain to improve its search ability. The effectiveness of the proposed algorithm is examined via eight benchmark instances with different characteristics and shapes of the Pareto optimal front. The scalability, hybridization, and computational time are rigorously studied. Comparative studies show that the proposed approach outperforms other state of the art algorithms.


2014 ◽  
Vol 543-547 ◽  
pp. 1934-1938
Author(s):  
Ming Xiao

For a clustering algorithm in two-dimension spatial data, the Adaptive Resonance Theory exists not only the shortcomings of pattern drift and vector module of information missing, but also difficultly adapts to spatial data clustering which is irregular distribution. A Tree-ART2 network model was proposed based on the above situation. It retains the memory of old model which maintains the constraint of spatial distance by learning and adjusting LTM pattern and amplitude information of vector. Meanwhile, introducing tree structure to the model can reduce the subjective requirement of vigilance parameter and decrease the occurrence of pattern mixing. It is showed that TART2 network has higher plasticity and adaptability through compared experiments.


1992 ◽  
Vol 03 (01) ◽  
pp. 57-63 ◽  
Author(s):  
Eamon P. Fulcher

WIS-ART merges the self-organising properties of Adaptive Resonance Theory (ART) with the operation of WISARD, an adaptive pattern recognition machine which uses discriminators of conventional Random Access Memories (RAMs). The result is an unsupervised pattern clustering system operating at near real-time that implements the leader algorithm. ART’s clustering is highly dependent upon the value of a “vigilance” parameter, which is set prior to training. However, for WIS-ART hierarchical clustering is performed automatically by the partitioning of discriminators into “multi-vigilance modules”. Thus, clustering may be controlled during the test phase according to the degree of discrimination (hierarchical level) required. Methods for improving the clustering characteristics of WIS-ART whilst still retaining stability are discussed.


2017 ◽  
Vol 24 (1) ◽  
pp. 25-47 ◽  
Author(s):  
Marcella S. R. Martins ◽  
Myriam R. B. S. Delgado ◽  
Ricardo Lüders ◽  
Roberto Santana ◽  
Richard A. Gonçalves ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document