Theoretic solution of rectangular thin plate on foundation with four edges free by symplectic geometry method

2006 ◽  
Vol 27 (6) ◽  
pp. 833-839 ◽  
Author(s):  
Yang Zhong ◽  
Yong-shan Zhang
2013 ◽  
Vol 699 ◽  
pp. 641-644
Author(s):  
Xiao Li Bian ◽  
Shuang Bao Li

Nonlinear oscillations of a simply-supported symmetric cross-ply composite laminated rectangular thin plate are investigated in this paper. The rectangular thin plate is subjected to the transversal and in-plane excitations. Based on the Reddy’s third-order shear deformation plate theory and the stress-strain relationship of the composite laminated plate, a two-degree-of-freedom non-autonomous nonlinear system governing equations of motions for the composite laminated rectangular thin plate is derived by using the Galerkin’s method. Numerical simulations illustrate that there exist complex nonlinear oscillations for composite laminated rectangular thin plate.


Author(s):  
Xiangying Guo ◽  
Wei Zhang ◽  
Ming-Hui Yao

This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy’s three-order shear deformation plate theory and the model of the von Karman type geometric nonlinearity, the nonlinear governing partial differential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton’s principle. Then, using the second-order Galerkin discretization approach, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation. The results of numerical simulation also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.


1958 ◽  
Vol 84 (3) ◽  
pp. 21-30
Author(s):  
Steponas Kolupaila ◽  
Ralph W. Powell ◽  
John W. Paull ◽  
Iwao Oki

Author(s):  
Wei Zhang ◽  
Jun-Hua Zhang ◽  
Ming-Hui Yao

The multi-pulse Shilnikov orbits and chaotic dynamics for a parametrically excited, simply supported rectangular buckled thin plate are studied by using the extended Melnikov method. Based on von Karman type equation and the Galerkin’s approach, two-degree-of-freedom nonlinear system is obtained for the rectangular thin plate. The extended Melnikov method is directly applied to the non-autonomous governing equations of the thin plate. The results obtained here show that the multipulse chaotic motions can occur in the thin plate.


Author(s):  
Rui Li ◽  
Yang Zhong ◽  
Ming Li

Analytic bending solutions of free rectangular thin plates resting on elastic foundations, based on the Winkler model, are obtained by a new symplectic superposition method. The proposed method offers a rational elegant approach to solve the problem analytically, which was believed to be difficult to attain. By way of a rigorous but simple derivation, the governing differential equations for rectangular thin plates on elastic foundations are transferred into Hamilton canonical equations. The symplectic geometry method is then introduced to obtain analytic solutions of the plates with all edges slidingly supported, followed by the application of superposition, which yields the resultant solutions of the plates with all edges free on elastic foundations. The proposed method is capable of solving plates on elastic foundations with any other combinations of boundary conditions. Comprehensive numerical results validate the solutions by comparison with those obtained by the finite element method.


Sign in / Sign up

Export Citation Format

Share Document