scholarly journals Nonlinear vibration of functionally graded graphene platelet-reinforced composite truncated conical shell using first-order shear deformation theory

Author(s):  
Shaowu Yang ◽  
Yuxin Hao ◽  
Wei Zhang ◽  
Li Yang ◽  
Lingtao Liu

AbstractIn this study, the first-order shear deformation theory (FSDT) is used to establish a nonlinear dynamic model for a conical shell truncated by a functionally graded graphene platelet-reinforced composite (FG-GPLRC). The vibration analyses of the FG-GPLRC truncated conical shell are presented. Considering the graphene platelets (GPLs) of the FG-GPLRC truncated conical shell with three different distribution patterns, the modified Halpin-Tsai model is used to calculate the effective Young’s modulus. Hamilton’s principle, the FSDT, and the von-Karman type nonlinear geometric relationships are used to derive a system of partial differential governing equations of the FG-GPLRC truncated conical shell. The Galerkin method is used to obtain the ordinary differential equations of the truncated conical shell. Then, the analytical nonlinear frequencies of the FG-GPLRC truncated conical shell are solved by the harmonic balance method. The effects of the weight fraction and distribution pattern of the GPLs, the ratio of the length to the radius as well as the ratio of the radius to the thickness of the FG-GPLRC truncated conical shell on the nonlinear natural frequency characteristics are discussed. This study culminates in the discovery of the periodic motion and chaotic motion of the FG-GPLRC truncated conical shell.

Author(s):  
Tripuresh Deb Singha ◽  
Tanmoy Bandyopadhyay ◽  
Amit Karmakar

This article presents a numerical investigation on the free vibration characteristics of rotating pretwisted sandwich conical shell panels with two functionally graded carbon nanotube-reinforced composite (FG-CNTRC) face sheets and a homogeneous core in uniform thermal environments. The carbon nanotubes are considered to be aligned with the span length and distributed either uniformly or functionally graded along the thickness of the sandwich conical shell panel. The material properties of FG-CNTRC face sheets and homogenous core are assumed to be temperature-dependent and computed employing micromechanics models. The shallow conical shell is modeled using finite element method within a framework of the higher-order shear deformation theory. Lagrange’s equation of motion is employed to derive the dynamic equilibrium equations of sandwich conical shell panels rotating at moderate rotational speeds wherein Coriolis effect is neglected. Computer codes are developed on the basis of present mathematical formulation to determine the natural frequencies of the sandwich conical panels. Convergence and comparison studies are performed to examine the consistency and accurateness of the present formulation. The numerical results are presented to analyze the effects of various parameters on the natural frequencies of the pretwisted FG-CNTRC sandwich conical shell panels under different thermal conditions.


2021 ◽  
pp. 107754632110248
Author(s):  
Reza Ansari ◽  
Ramtin Hassani ◽  
Emad Hasrati ◽  
Hessam Rouhi

In this article, the vibrational behavior of conical panels in the nonlinear regime made of functionally graded graphene platelet–reinforced composite having a hole with various shapes is investigated in the context of higher-order shear deformation theory. To achieve this aim, a numerical approach is used based on the variational differential quadrature and finite element methods. The geometrical nonlinearity is captured using the von Karman hypothesis. Also, the modified Halpin–Tsai model and rule of mixture are applied to calculate the material properties of graphene platelet–reinforced composite for various functionally graded distribution patterns of graphene platelets. The governing equations are derived by a variational approach and represented in matrix-vector form for the computational purposes. Moreover, attributable to using higher-order shear deformation theory, a mixed formulation approach is presented to consider the continuity of first-order derivatives on the common boundaries of elements. In the numerical results, the nonlinear free vibration behaviors of functionally graded graphene platelet–reinforced composite conical panels including square/circular/elliptical hole and with crack are studied. The effects of boundary conditions, graphene platelet reinforcement, and other important parameters on the vibrational response of panels are comprehensively analyzed.


Author(s):  
Mohammad Reza Salehi Kolahi ◽  
Hossein Rahmani ◽  
Hossein Moeinkhah

In this paper, the first order shear deformation theory is used to derive an analytical formulation for shrink-fitted thick-walled functionally graded cylinders. It is assumed that the cylinders have constant Poisson’s ratio and the elastic modulus varies radially along the thickness with a power function. Furthermore, a finite element simulation is carried out using COMSOL Multiphysics, which has the advantage of defining material properties as analytical functions. The results from first order shear deformation theory are compared with the findings of both plane elasticity theory and FE simulation. The results of this study could be used to design and manufacture for elastic shrink-fitted FG cylinders.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Fuzhen Pang ◽  
Cong Gao ◽  
Jie Cui ◽  
Yi Ren ◽  
Haichao Li ◽  
...  

This paper describes a unified solution to investigate free vibration solutions of functionally graded (FG) spherical shell with general boundary restraints. The analytical model is established based on the first-order shear deformation theory, and the material varies uniformly along the thickness of FG spherical shell which is divided into several sections along the meridian direction. The displacement functions along circumferential and axial direction are, respectively, composed by Fourier series and Jacobi polynomial regardless of boundary restraints. The boundary restraints of FG spherical shell can be easily simulated according to penalty method of spring stiffness technique, and the vibration solutions are obtained by Rayleigh–Ritz method. To verify the reliability and accuracy of the present solutions, the convergence and numerical verification have been conducted about different boundary parameters, Jacobi parameter, etc. The results obtained by the present method closely agree with those obtained from the published literatures, experiments, and finite element method (FEM). The impacts of geometric dimensions and boundary conditions on the vibration characteristics of FG spherical shell structure are also presented.


Sign in / Sign up

Export Citation Format

Share Document