Lung injury after ischemia-reperfusion of small intestine in rats involves apoptosis of type II alveolar epithelial cells mediated by TNF-α and activation of Bid pathway

APOPTOSIS ◽  
2007 ◽  
Vol 12 (11) ◽  
pp. 1989-2001 ◽  
Author(s):  
Shucai An ◽  
Yoshitaka Hishikawa ◽  
Jie Liu ◽  
Takehiko Koji
2007 ◽  
Vol 293 (1) ◽  
pp. L105-L113 ◽  
Author(s):  
Ashish K. Sharma ◽  
Lucas G. Fernandez ◽  
Alaa S. Awad ◽  
Irving L. Kron ◽  
Victor E. Laubach

Pulmonary ischemia-reperfusion (IR) injury entails acute activation of alveolar macrophages followed by neutrophil sequestration. Although proinflammatory cytokines and chemokines such as TNF-α and monocyte chemoattractant protein-1 (MCP-1) from macrophages are known to modulate acute IR injury, the contribution of alveolar epithelial cells to IR injury and their intercellular interactions with other cell types such as alveolar macrophages and neutrophils remain unclear. In this study, we tested the hypothesis that following IR, alveolar macrophage-produced TNF-α further induces alveolar epithelial cells to produce key chemokines that could then contribute to subsequent lung injury through the recruitment of neutrophils. Cultured RAW264.7 macrophages and MLE-12 alveolar epithelial cells were subjected to acute hypoxia-reoxygenation (H/R) as an in vitro model of pulmonary IR. H/R (3 h/1 h) significantly induced KC, MCP-1, macrophage inflammatory protein-2 (MIP-2), RANTES, and IL-6 (but not TNF-α) by MLE-12 cells, whereas H/R induced TNF-α, MCP-1, RANTES, MIP-1α, and MIP-2 (but not KC) by RAW264.7 cells. These results were confirmed using primary murine alveolar macrophages and primary alveolar type II cells. Importantly, using macrophage and epithelial coculture methods, the specific production of TNF-α by H/R-exposed RAW264.7 cells significantly induced proinflammatory cytokine/chemokine expression (KC, MCP-1, MIP-2, RANTES, and IL-6) by MLE-12 cells. Collectively, these results demonstrate that alveolar type II cells, in conjunction with alveolar macrophage-produced TNF-α, contribute to the initiation of acute pulmonary IR injury via a proinflammatory cascade. The release of key chemokines, such as KC and MIP-2, by activated type II cells may thus significantly contribute to neutrophil sequestration during IR injury.


2012 ◽  
Vol 302 (3) ◽  
pp. L343-L351 ◽  
Author(s):  
Anne Sturrock ◽  
Elfateh Seedahmed ◽  
Mustafa Mir-Kasimov ◽  
Jonathan Boltax ◽  
Michael L. McManus ◽  
...  

Exposure of mice to hyperoxia induces alveolar epithelial cell (AEC) injury, acute lung injury and death. Overexpression of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the lung protects against these effects, although the mechanisms are not yet clear. Hyperoxia induces cellular injury via effects on mitochondrial integrity, associated with induction of proapoptotic members of the Bcl-2 family. We hypothesized that GM-CSF protects AEC through effects on mitochondrial integrity. MLE-12 cells (a murine type II cell line) and primary murine type II AEC were subjected to oxidative stress by exposure to 80% oxygen and by exposure to H2O2. Exposure to H2O2 induced cytochrome c release and decreased mitochondrial reductase activity in MLE-12 cells. Incubation with GM-CSF significantly attenuated these effects. Protection induced by GM-CSF was associated with Akt activation. GM-CSF treatment also resulted in increased expression of the antiapoptotic Bcl-2 family member, Mcl-1. Primary murine AEC were significantly more tolerant of oxidative stress than MLE-12 cells. In contrast to MLE-12 cells, primary AEC expressed significant GM-CSF at baseline and demonstrated constitutive activation of Akt and increased baseline expression of Mcl-1. Treatment with exogenous GM-CSF further increased Akt activation and Mcl-1 expression in primary AEC. Conversely, suppression of AEC GM-CSF expression by use of GM-CSF-specific small interfering RNA resulted in decreased tolerance of oxidative stress, Furthermore, silencing of Mcl-1 prevented GM-CSF-induced protection. We conclude that GM-CSF protects alveolar epithelial cells against oxidative stress-induced mitochondrial injury via the Akt pathway and its downstream components, including Mcl-1. Epithelial cell-derived GM-CSF may contribute to intrinsic defense mechanisms limiting lung injury.


2009 ◽  
Vol 296 (3) ◽  
pp. L442-L452 ◽  
Author(s):  
Leigh M. Marsh ◽  
Lidija Cakarova ◽  
Grazyna Kwapiszewska ◽  
Werner von Wulffen ◽  
Susanne Herold ◽  
...  

Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine involved in acute lung injury and other processes such as wound repair and tumor growth. MIF exerts pro-proliferative effects on a variety of cell types including monocytes/macrophages, B cells, and gastric epithelial cell lines through binding to the major histocompatibility complex type II-associated invariant chain, CD74. In acute lung injury, inflammatory damage of the alveolar epithelium leads to loss of type I alveolar epithelial cells (AEC-I), which are replaced by proliferation and differentiation of type II alveolar epithelial cells (AEC-II). In this study we have investigated the potential of MIF to contribute to alveolar repair by stimulating alveolar epithelial cell proliferation. We show that murine AEC-II, but not AEC-I, express high surface levels of CD74 in vivo. Culture of AEC-II in vitro resulted in decreased mRNA levels for CD74 and loss of surface CD74 expression, which correlated with a transition of AEC-II to an AEC-I-like phenotype. MIF stimulation of AEC-II induced rapid and prolonged phosphorylation of ERK1/2 and Akt, increased expression of cyclins D1 and E, as well as AEC-II proliferation. Corresponding MIF signaling and enhanced thymidine incorporation was observed after MIF stimulation of MLE-12 cells transfected to overexpress CD74. In contrast, MIF did not induce MAPK activation, gene transcription, or increased proliferation in differentiated AEC-I-like cells that lack CD74. These data suggest a previously unidentified role of MIF-CD74 interaction by inducing proliferation of AEC-II, which may contribute to alveolar repair.


2020 ◽  
Author(s):  
Weijing Wu ◽  
Jiamin Zhang ◽  
Xihua Lian ◽  
Xiaoping Lin ◽  
Xiaoshan Su ◽  
...  

Abstract Objective: To study the roles of Nrf2 in acute lung injury (ALI) pathogenesis by investigating the effects of Nrf2 on regulating oxidative stress damage in TNF-α-induced type II alveolar epithelial cells (T2AECs).Methods: T2AECs were transfected with Nrf2 siRNA and overexpression vectors for six hours before being induced by TNF-α for 24 hours. Subsequently, levels of interleukins (IL-6 and IL-8), reactive oxygen species (ROS), malondialdehyde (MDA), total antioxidation capability (T-AOC), Nrf2, NOX1 and NF-kB were measured. Additionally, potential Nrf2 binding site in NOX1 promoter was predicted by AliBaba2.1 and two recombinant vectors, namely “pGL3-NOX1-1500” and “pGL3-NOX1-1489, were constructed by inserting the sequence of NOX1 promoter in full-length and that in the absence of Nrf2 binding site to pGL3 basic vector. T2AECs were transfected with these vectors prior to TNF-α induction and the luciferase activity was measured.Results: Levels of IL-6, IL-8, ROS and MDA were increased (P<0.05) while T-AOC was decreased in TNF-α-induced A549 cells after the transfection of Nrf2 siRNA vector (P<0.05). In contrast, concentrations of IL-6, IL-8, ROS and MDA were decreased (P<0.05) whereas T-AOC was increased after the transfection of Nrf2 overexpression vector (P<0.05). NOX1 promoter possesses one Nrf2 binding site. Cells transfected by “pGL3-NOX1-1500” vector had the highest luciferase activity, followed by cells transfected by “pGL3-NOX1-1489” vector and the control cells (P<0.05).Conclusion: Nrf2 modulates NOX1 expression via binding to its promoter, by which against TNF-α-induced oxidative stress damage in T2AECs. Thus, Nrf2 might be a therapeutic target for ALI.


Sign in / Sign up

Export Citation Format

Share Document