GM-CSF provides autocrine protection for murine alveolar epithelial cells from oxidant-induced mitochondrial injury

2012 ◽  
Vol 302 (3) ◽  
pp. L343-L351 ◽  
Author(s):  
Anne Sturrock ◽  
Elfateh Seedahmed ◽  
Mustafa Mir-Kasimov ◽  
Jonathan Boltax ◽  
Michael L. McManus ◽  
...  

Exposure of mice to hyperoxia induces alveolar epithelial cell (AEC) injury, acute lung injury and death. Overexpression of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the lung protects against these effects, although the mechanisms are not yet clear. Hyperoxia induces cellular injury via effects on mitochondrial integrity, associated with induction of proapoptotic members of the Bcl-2 family. We hypothesized that GM-CSF protects AEC through effects on mitochondrial integrity. MLE-12 cells (a murine type II cell line) and primary murine type II AEC were subjected to oxidative stress by exposure to 80% oxygen and by exposure to H2O2. Exposure to H2O2 induced cytochrome c release and decreased mitochondrial reductase activity in MLE-12 cells. Incubation with GM-CSF significantly attenuated these effects. Protection induced by GM-CSF was associated with Akt activation. GM-CSF treatment also resulted in increased expression of the antiapoptotic Bcl-2 family member, Mcl-1. Primary murine AEC were significantly more tolerant of oxidative stress than MLE-12 cells. In contrast to MLE-12 cells, primary AEC expressed significant GM-CSF at baseline and demonstrated constitutive activation of Akt and increased baseline expression of Mcl-1. Treatment with exogenous GM-CSF further increased Akt activation and Mcl-1 expression in primary AEC. Conversely, suppression of AEC GM-CSF expression by use of GM-CSF-specific small interfering RNA resulted in decreased tolerance of oxidative stress, Furthermore, silencing of Mcl-1 prevented GM-CSF-induced protection. We conclude that GM-CSF protects alveolar epithelial cells against oxidative stress-induced mitochondrial injury via the Akt pathway and its downstream components, including Mcl-1. Epithelial cell-derived GM-CSF may contribute to intrinsic defense mechanisms limiting lung injury.

2009 ◽  
Vol 296 (3) ◽  
pp. L442-L452 ◽  
Author(s):  
Leigh M. Marsh ◽  
Lidija Cakarova ◽  
Grazyna Kwapiszewska ◽  
Werner von Wulffen ◽  
Susanne Herold ◽  
...  

Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine involved in acute lung injury and other processes such as wound repair and tumor growth. MIF exerts pro-proliferative effects on a variety of cell types including monocytes/macrophages, B cells, and gastric epithelial cell lines through binding to the major histocompatibility complex type II-associated invariant chain, CD74. In acute lung injury, inflammatory damage of the alveolar epithelium leads to loss of type I alveolar epithelial cells (AEC-I), which are replaced by proliferation and differentiation of type II alveolar epithelial cells (AEC-II). In this study we have investigated the potential of MIF to contribute to alveolar repair by stimulating alveolar epithelial cell proliferation. We show that murine AEC-II, but not AEC-I, express high surface levels of CD74 in vivo. Culture of AEC-II in vitro resulted in decreased mRNA levels for CD74 and loss of surface CD74 expression, which correlated with a transition of AEC-II to an AEC-I-like phenotype. MIF stimulation of AEC-II induced rapid and prolonged phosphorylation of ERK1/2 and Akt, increased expression of cyclins D1 and E, as well as AEC-II proliferation. Corresponding MIF signaling and enhanced thymidine incorporation was observed after MIF stimulation of MLE-12 cells transfected to overexpress CD74. In contrast, MIF did not induce MAPK activation, gene transcription, or increased proliferation in differentiated AEC-I-like cells that lack CD74. These data suggest a previously unidentified role of MIF-CD74 interaction by inducing proliferation of AEC-II, which may contribute to alveolar repair.


1994 ◽  
Vol 267 (5) ◽  
pp. L498-L507 ◽  
Author(s):  
N. Khalil ◽  
R. N. O'Connor ◽  
K. C. Flanders ◽  
W. Shing ◽  
C. I. Whitman

Three isoforms of transforming growth factor-beta (TGF-beta) are found in mammalian cells and are potent regulators of inflammation, connective tissue synthesis, cellular proliferation, and differentiation. To determine the distribution and regulation of TGF-beta isoforms during pulmonary injury, a rat model of bleomycin-induced lung inflammation and repair was used. Using immunohistochemistry, we demonstrate that TGF-beta 2 and TGF-beta 3 were localized to alveolar macrophages as well as epithelial and smooth muscle cells of both normal rat lungs and rat lungs obtained at all time intervals after bleomycin administration. Early in bleomycin-induced lung injury, when there is active proliferation of type II alveolar epithelial cells, there was an increase in the number of type II alveolar epithelial cells isolated per lung and an increase in DNA synthesis by explanted type II alveolar epithelial cells. At this time, the secretion of biologically active TGF-beta 1–3, which are potent inhibitors of epithelial cell proliferation, was decreased. However, the secretion of TGF-beta 1–3 activity was markedly increased later in the injury response and coincided with a reduction in the number of type II alveolar epithelial cells isolated per lung and DNA synthesis in vitro. Furthermore, the addition of TGF-beta 1, 2, and 3 to cultures of actively proliferating type II alveolar epithelial cells resulted in inhibition of [3H]thymidine incorporation, whereas, in the presence of anti-TGF-beta 1-3 antibody, there was an increase in [3H]thymidine incorporation. Our findings suggest that altered secretion of TGF-beta 1-3 activity by type II alveolar epithelial cells during bleomycin-induced lung injury may regulate pulmonary alveolar epithelial cell proliferation during injury and repair phases.


1994 ◽  
Vol 266 (2) ◽  
pp. L148-L155 ◽  
Author(s):  
H. Blau ◽  
S. Riklis ◽  
V. Kravtsov ◽  
M. Kalina

Cultured alveolar type II cells and pulmonary epithelial (PE) cells in long-term culture were found to secrete colony-stimulating factors (CSF) into the medium in similar fashion to alveolar macrophages. CSF activity was determined by using the in vitro assay for myeloid progenitor cells [colony-forming units in culture (CFU-C)]. Both lipopolisaccharide (LPS) and interleukin-1 alpha (IL-1 alpha) were found to upregulate the secretion 6.5- to 8-fold from alveolar type II cells and macrophages. However, no stimulatory effect of these factors was observed in PE cells that release CSF into the medium constitutively, possibly due to the conditions of long-term culture. The CSF activity was partially neutralized (70% inhibition) by antibodies against murine granulocyte/macrophage (GM)-CSF and IL-3, thus indicating the presence of both GM-CSF and IL-3-like factors in the CSF. However, the presence of other cytokines in the CSF is highly probable. Surfactant-associated protein A (SP-A), which is known to play a central role in surfactant homeostasis and function, was also found to upregulate secretion of CSF (at concentrations of 0.1-5 micrograms/ml) from alveolar type II cells and macrophages. Control cells such as rat peritoneal macrophages, alveolar fibroblasts, and 3T3/NIH cell line could not be elicited by SP-A to release CSF. The results are discussed in relation to the possible participation of the alveolar epithelial cells in various intercellular signaling networks. Our studies suggest that alveolar type II cells and SP-A may play an important regulatory role in the modulation of immune and inflammatory effector cells within the alveolar space.


2000 ◽  
Vol 279 (3) ◽  
pp. L487-L495 ◽  
Author(s):  
Paul J. Christensen ◽  
Marc B. Bailie ◽  
Richard E. Goodman ◽  
Aidan D. O'Brien ◽  
Galen B. Toews ◽  
...  

Evidence derived from human and animal studies strongly supports the notion that dysfunctional alveolar epithelial cells (AECs) play a central role in determining the progression of inflammatory injury to pulmonary fibrosis. We formed the hypothesis that impaired production of the regulatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) by injured AECs plays a role in the development of pulmonary fibrosis. To test this hypothesis, we used the well-characterized model of bleomycin-induced pulmonary fibrosis in rats. GM-CSF mRNA is expressed at a constant high level in the lungs of untreated or saline-challenged animals. In contrast, there is a consistent reduction in expression of GM-CSF mRNA in the lung during the first week after bleomycin injury. Bleomycin-treated rats given neutralizing rabbit anti-rat GM-CSF IgG develop increased fibrosis. Type II AECs isolated from rats after bleomycin injury demonstrate diminished expression of GM-CSF mRNA immediately after isolation and in response to stimulation in vitro with endotoxin compared with that in normal type II cells. These data demonstrate a defect in the ability of type II epithelial cells from bleomycin-treated rats to express GM-CSF mRNA and a protective role for GM-CSF in the pathogenesis of bleomycin-induced pulmonary fibrosis.


1994 ◽  
Vol 266 (1) ◽  
pp. L92-L100 ◽  
Author(s):  
S. Lannan ◽  
K. Donaldson ◽  
D. Brown ◽  
W. MacNee

The oxidant-antioxidant balance in the airspaces of the lungs may be critical in protecting the lungs from the effects of cigarette smoke. We studied the effect of cigarette smoke and its condensates on the detachment, attachment, and proliferation of the A549 human alveolar epithelial cell line, in an in vitro model of cell injury and regeneration and the protective effects of antioxidants. Whole and vapor phase cigarette smoke decreased 51Cr-labeled A549 cell attachment, increased cell detachment, and decreased cell proliferation, as assessed by [3H]thymidine uptake. Freshly isolated rat type II alveolar epithelial cells showed an enhanced susceptibility to smoke-induced cell lysis when compared with the A549 cell line. Reduced glutathione (GSH) (400 microM) protected against the effects of cigarette smoke exposure on cell attachment, proliferation, and detachment. Depletion of intracellular GSH with buthionine sulfoxamine enhanced the epithelial cell detachment injury produced by smoke condensates. We conclude that cigarette smoke and its condensates cause an oxidant-induced injury to A549 human type II alveolar epithelial cells. Both intra- and extracellular GSH have important roles in protecting epithelial cells from the injurious effects of cigarette smoke.


Sign in / Sign up

Export Citation Format

Share Document