scholarly journals Anisotropic star on pseudo-spheroidal spacetime

2016 ◽  
Vol 361 (2) ◽  
Author(s):  
B. S. Ratanpal ◽  
V. O. Thomas ◽  
D. M. Pandya
Keyword(s):  
2021 ◽  
Author(s):  
Baiju Dayanandan ◽  
T. T. Smitha ◽  
Sunil Maurya

Abstract This paper addresses a new gravitationally decoupled anisotropic solution for the compact star model via the minimal geometric deformation (MGD) approach. We consider a non-singular well-behaved gravitational potential corresponding to the radial component of the seed spacetime and embedding class I condition that determines the temporal metric function to solve the seed system completely. However, two different well-known mimic approaches such as pr = Θ1 1 and ρ = Θ0 0 have been employed to determine the deformation function which gives the solution of the second system corresponding to the extra source. In order to test the physical viability of the solution, we have checked several conditions such as regularity conditions, energy conditions, causality conditions, hydrostatic equilibrium, etc. Moreover, the stability of the solutions has been also discussed by the adiabatic index and its critical value. We find that the solutions set seems viable as far as observational data are concerned.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
G. G. L. Nashed ◽  
S. D. Odintsov ◽  
V. K. Oikonomou

AbstractIn this paper we shall consider spherically symmetric spacetime solutions describing the interior of stellar compact objects, in the context of higher-order curvature theory of the $${{\mathrm {f(R)}}}$$ f ( R ) type. We shall derive the non-vacuum field equations of the higher-order curvature theory, without assuming any specific form of the $${{\mathrm {f(R)}}}$$ f ( R ) theory, specifying the analysis for a spherically symmetric spacetime with two unknown functions. We obtain a system of highly non-linear differential equations, which consists of four differential equations with six unknown functions. To solve such a system, we assume a specific form of metric potentials, using the Krori–Barua ansatz. We successfully solve the system of differential equations, and we derive all the components of the energy–momentum tensor. Moreover, we derive the non-trivial general form of $${{\mathrm {f(R)}}}$$ f ( R ) that may generate such solutions and calculate the dynamic Ricci scalar of the anisotropic star. Accordingly, we calculate the asymptotic form of the function $${\mathrm {f(R)}}$$ f ( R ) , which is a polynomial function. We match the derived interior solution with the exterior one, which was derived in [1], with the latter also resulting to a non-trivial form of the Ricci scalar. Notably but rather expected, the exterior solution differs from the Schwarzschild one in the context of general relativity. The matching procedure will eventually relate two constants with the mass and radius of the compact stellar object. We list the necessary conditions that any compact anisotropic star must satisfy and explain in detail that our model bypasses all of these conditions for a special compact star $$\textit{Her X--1}$$ Her X - - 1 , which has an estimated mass and radius $$(mass = 0.85 \pm 0.15M_{\circledcirc }\ and\ radius = 8.1 \pm 0.41~\text {km}$$ ( m a s s = 0.85 ± 0.15 M ⊚ a n d r a d i u s = 8.1 ± 0.41 km ). Moreover, we study the stability of this model by using the Tolman–Oppenheimer–Volkoff equation and adiabatic index, and we show that the considered model is different and more stable compared to the corresponding models in the context of general relativity.


2013 ◽  
Vol 22 (13) ◽  
pp. 1350074 ◽  
Author(s):  
R. SHARMA ◽  
B. S. RATANPAL

A class of solutions describing the interior of a static spherically symmetric compact anisotropic star is reported. The analytic solution has been obtained by utilizing the Finch and Skea [Class. Quantum Grav.6 (1989) 467] ansatz for the metric potential grr which has a clear geometric interpretation for the associated background spacetime. Based on physical grounds, appropriate bounds on the model parameters have been obtained and it has been shown that the model admits an equation of state (EOS) which is quadratic in nature.


2015 ◽  
Vol 356 (2) ◽  
pp. 327-337 ◽  
Author(s):  
Bikash Chandra Paul ◽  
Pradip Kumar Chattopadhyay ◽  
Shibshankar Karmakar

2006 ◽  
Vol 15 (07) ◽  
pp. 1053-1065 ◽  
Author(s):  
N. F. NAIDU ◽  
M. GOVENDER ◽  
K. S. GOVINDER

We study the effects of pressure anisotropy and heat dissipation in a spherically symmetric radiating star undergoing gravitational collapse. An exact solution of the Einstein field equations is presented in which the model has a Friedmann-like limit when the heat flux vanishes. The behavior of the temperature profile of the evolving star is investigated within the framework of causal thermodynamics. In particular, we show that there are significant differences between the relaxation time for the heat flux and the relaxation time for the shear stress.


2021 ◽  
pp. 168671
Author(s):  
C. Arias ◽  
E. Contreras ◽  
E. Fuenmayor ◽  
A. Ramos
Keyword(s):  

2016 ◽  
Vol 26 (06) ◽  
pp. 1750053 ◽  
Author(s):  
Piyali Bhar ◽  
Megan Govender

In this paper, we present a model of a compact relativistic anisotropic star in the presence of an electric field. In order to obtain an exact solution of the Einstein–Maxwell field equations, we assume that the stellar material inside the star obeys a Chaplygin equation of state which is a nonlinear relationship between the radial pressure and the matter density. Using Tolman’s metric potential for [Formula: see text], we obtain the other metric co-efficient by employing the Karmarkar condition which is a necessary and sufficient condition for the interior spacetime of our model to be of embedding class I. Our stellar model is free from central singularity and obeys all the conditions for a realistic stellar object.


2018 ◽  
Vol 96 (12) ◽  
pp. 1295-1303 ◽  
Author(s):  
D. Momeni ◽  
G. Abbas ◽  
S. Qaisar ◽  
Zaid Zaz ◽  
R. Myrzakulov

In this article, the authors have discussed a new exact model of anisotropic stars in the f(T) theory of gravity. A parametric form of the metric functions has been implemented to solve the dynamical equations in f(T) theory with the anisotropic fluid. The novelty of the work is that the obtained solutions do not contain singularity but are potentially stable. The estimated values for mass and radius of the different strange stars, RX J 1856–37, Her X-1, and Vela X-12, have been utilized to find the values of unknown constants in Krori and Barua metrics. The physical parameters like anisotropy, stability, and redshift of the stars have been examined in detail.


Sign in / Sign up

Export Citation Format

Share Document