scholarly journals Non-minimally coupled nonlinear spinor field in FRW cosmology

2020 ◽  
Vol 365 (4) ◽  
Author(s):  
Bijan Saha
1985 ◽  
Vol 40 (1) ◽  
pp. 14-28
Author(s):  
H. Stumpf

Unified nonlinear spinor field models are selfregularizing quantum field theories in which all observable (elementary and non-elementary) particles are assumed to be bound states of fermionic preon fields. Due to their large masses the preons themselves are confined. In preceding papers a functional energy representation, the statistical interpretation and the dynamical equations were derived. In this paper the dynamics of composite particles is discussed. The composite particles are defined to be eigensolutions of the diagonal part of the energy representation. Corresponding calculations are in preparation, but in the present paper a suitable composite particle spectrum is assumed. It consists of preon-antipreon boson states and threepreon- fermion states with corresponding antifermions and contains bound states as well as preon scattering states. The state functional is expanded in terms of these composite particle states with inclusion of preon scattering states. The transformation of the functional energy representation of the spinor field into composite particle functional operators produces a hierarchy of effective interactions at the composite particle level, the leading terms of which are identical with the functional energy representation of a phenomenological boson-fermion coupling theory. This representation is valid as long as the processes are assumed to be below the energetic threshold for preon production or preon break-up reactions, respectively. From this it can be concluded that below the threshold the effective interactions of composite particles in a unified spinor field model lead to phenomenological coupling theories which depend in their properties on the bound state spectrum of the self-regularizing spinor theory.


1984 ◽  
Vol 39 (5) ◽  
pp. 441-446
Author(s):  
H. Stumpf

The nonrenormalizable first order derivative nonlinear spinor field equation with scalar interaction possesses two equivalent Hamiltonians. The first is the conventional one while the second is a two-field Hamiltonian with the original field and its parity transform. By quantization the latter leads to an inequivalent representation compared with the former. This is connected with parity symmetry breaking and the loss of simultaneous diagonalization of energy and subfield particle numbers. The corresponding grand canonical Hamiltonian is shown to result equivalently from a renormalizable second order derivative nonlinear spinor field equation. This is achieved by means of a theorem about the decomposition of higher order derivative nonlinear spinor field equations derived previously


1972 ◽  
Vol 27 (7) ◽  
pp. 1058-1072
Author(s):  
H Stumpf

Abstract Nonlinear spinor theory contains unobservable field operators which cannot be identified with free field operators. Therefore for the comparson with experiment a theory of observables for nonlinear spinor fields is required. This theory is developed for global observables by means of a map into functional space, and leads to a functional quantum theory of nonlinear spinor fields


1971 ◽  
Vol 26 (4) ◽  
pp. 623-630 ◽  
Author(s):  
H Stumpf

Abstract Dynamics of quantum field theory can be formulated by functional equations. To develop a complete functional quantum theory one has to describe the physical information by functional operations only. Such operations have been defined in preceding papers. To apply these operations to physical problems, the corresponding functionals have to be known. Therefore in this paper calculational procedures for functionals are discussed. As high energy phenomena are of interest, the calculational procedures are given for spinor field functionals. Especially a method for the calculation of stationary and Fermion-Fermion scattering functionals is proposed.


1975 ◽  
Vol 30 (11) ◽  
pp. 1361-1371 ◽  
Author(s):  
H. Stumpf ◽  
K. Scheerer

Functional quantum theory is defined by an isomorphism of the state space H of a conventional quantum theory into an appropriate functional state space D It is a constructive approach to quantum theory in those cases where the state spaces H of physical eigenstates cannot be calculated explicitly like in nonlinear spinor field quantum theory. For the foundation of functional quantum theory appropriate functional state spaces have to be constructed which have to be representation spaces of the corresponding invariance groups. In this paper, this problem is treated for the spinor field. Using anticommuting source operator, it is shown that the construction problem of these spaces is tightly connected with the construction of appropriate relativistic function spaces. This is discussed in detail and explicit representations of the function spaces are given. Imposing no artificial restrictions it follows that the resulting functional spaces are indefinite. Physically the indefiniteness results from the inclusion of tachyon states. It is reasonable to assume a tight connection of these tachyon states with the ghost states introduced by Heisenberg for the regularization of the nonrenormalizable spinor theory


2018 ◽  
Vol 173 ◽  
pp. 02018
Author(s):  
Bijan Saha

Within the scope of the non-diagonal Bianchi cosmological models we have studied the role of the spinor field in the evolution of the Universe. In the non-diagonal Bianchi models the spinor field distribution along the main axis is anisotropic and does not vanish in the absence of the spinor field nonlinearity. Hence within these models perfect fluid, dark energy etc. cannot be simulated by the spinor field nonlinearity. The equation for volume scale V in the case of non-diagonal Bianchi models contains a term with first derivative of V explicitly and does not allow exact solution by quadratures. Like the diagonal models the non-diagonal Bianchi space-time becomes locally rotationally symmetric even in the presence of a spinor field. It was found that depending on the sign of the coupling constant the model allows either an open Universe that rapidly grows up or a close Universe that ends in a Big Crunch singularity.


Sign in / Sign up

Export Citation Format

Share Document