Structural changes in visual cortex area 17 in children with aftereffects of perinatal injury to the central nervous system

2007 ◽  
Vol 143 (6) ◽  
pp. 753-756 ◽  
Author(s):  
V. N. Sal’kov ◽  
R. M. Khudoerkov
Author(s):  
Gordon M. Shepherd ◽  
Michele Migliore ◽  
Francesco Cavarretta

The olfactory bulb is the site of the first synaptic processing of the olfactory input from the nose. It is present in all vertebrates (except cetaceans) and a the analogous antennal lobe in most invertebrates. With its sharply demarcated cell types and histological layers, and some well-studied synaptic interactions, it is one of the first and clearest examples of the microcircuit concept in the central nervous system. The olfactory bulb microcircuit receives the information in the sensory domain and transforms it into information in the neural domain. Traditionally, it has been considered analogous to the retina in processing its sensory input, but that has been replaced by the view that it is more similar to the thalamus or primary visual cortex in processing its multidimensional input. This chapter describes the main synaptic connections and functional operations and how they provide the output to the olfactory cortex


1895 ◽  
Vol 41 (175) ◽  
pp. 622-635
Author(s):  
W. F. Robertson

There is at the present time great need of more complete and definite knowledge as to the pathology of the very marked structural changes that so commonly affect the pia-arachnoid in the insane. The subject is one of much importance to all of us as medical psychologists, for not only is the condition in question one of the most conspicuous lesions associated with mental disease, but it implicates a structure of primary importance in the economy of the central nervous system. It is by way of vessels that course through this membrane that nutriment is conveyed to the brain cortex, and the waste products resulting from metabolism in the cerebral tissues are mainly conveyed away in the fluid that circulates in its lymph spaces. Therefore it is evident that these morbid changes may very seriously interfere with the functions both of nutrition and excretion in the brain.


2000 ◽  
Vol 20 (11) ◽  
pp. 1513-1528 ◽  
Author(s):  
Timothy Schallert ◽  
J. Leigh Leasure ◽  
Bryan Kolb

Considerable structural plasticity is possible in the damaged neocortex and connected brain areas, and the potential for significant functional recovery remains even during the chronic phases of the recovery process. In this article, the authors review the literature on use-dependent morphologic events, focusing on the direct interaction of behavioral experience and structural changes associated with plasticity and degeneration. Experience-associated neural changes have the potential to either hinder or enhance functional recovery; therefore, issues concerning the nature, timing, and intensity of behavior-based intervention strategies are addressed.


2008 ◽  
Vol 31 (2) ◽  
pp. 217-218
Author(s):  
Giuseppe Trautteur ◽  
Edoardo Datteri ◽  
Matteo Santoro

AbstractNijhawan argues convincingly that predictive mechanisms are pervasive in the central nervous system (CNS). However, scientific understanding of visual prediction requires one to formulate empirically testable neurophysiological models. The author's suggestions in this direction are to be evaluated on the basis of more realistic experimental methodologies and more plausible assumptions on the hierarchical character of the human visual cortex.


Sign in / Sign up

Export Citation Format

Share Document