Olfactory Bulb

Author(s):  
Gordon M. Shepherd ◽  
Michele Migliore ◽  
Francesco Cavarretta

The olfactory bulb is the site of the first synaptic processing of the olfactory input from the nose. It is present in all vertebrates (except cetaceans) and a the analogous antennal lobe in most invertebrates. With its sharply demarcated cell types and histological layers, and some well-studied synaptic interactions, it is one of the first and clearest examples of the microcircuit concept in the central nervous system. The olfactory bulb microcircuit receives the information in the sensory domain and transforms it into information in the neural domain. Traditionally, it has been considered analogous to the retina in processing its sensory input, but that has been replaced by the view that it is more similar to the thalamus or primary visual cortex in processing its multidimensional input. This chapter describes the main synaptic connections and functional operations and how they provide the output to the olfactory cortex

2021 ◽  
Vol 12 ◽  
Author(s):  
Mar Pacheco-Herrero ◽  
Luis O. Soto-Rojas ◽  
Charles R. Harrington ◽  
Yazmin M. Flores-Martinez ◽  
Marcos M. Villegas-Rojas ◽  
...  

The current pandemic caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a public health emergency. To date, March 1, 2021, coronavirus disease 2019 (COVID-19) has caused about 114 million accumulated cases and 2.53 million deaths worldwide. Previous pieces of evidence suggest that SARS-CoV-2 may affect the central nervous system (CNS) and cause neurological symptoms in COVID-19 patients. It is also known that angiotensin-converting enzyme-2 (ACE2), the primary receptor for SARS-CoV-2 infection, is expressed in different brain areas and cell types. Thus, it is hypothesized that infection by this virus could generate or exacerbate neuropathological alterations. However, the molecular mechanisms that link COVID-19 disease and nerve damage are unclear. In this review, we describe the routes of SARS-CoV-2 invasion into the central nervous system. We also analyze the neuropathologic mechanisms underlying this viral infection, and their potential relationship with the neurological manifestations described in patients with COVID-19, and the appearance or exacerbation of some neurodegenerative diseases.


Author(s):  
Richard P. Tucker ◽  
Qizhi Gong

Animals use their olfactory system for the procurement of food, the detection of danger, and the identification of potential mates. In vertebrates, the olfactory sensory neuron has a single apical dendrite that is exposed to the environment and a single basal axon that projects to the central nervous system (i.e., the olfactory bulb). The first odorant receptors to be discovered belong to an enormous gene family encoding G protein-coupled seven transmembrane domain proteins. Odorant binding to these classical odorant receptors initiates a GTP-dependent signaling cascade that uses cAMP as a second messenger. Subsequently, additional types of odorant receptors using different signaling pathways have been identified. While most olfactory sensory neurons are found in the olfactory sensory neuroepithelium, others are found in specialized olfactory subsystems. In rodents, the vomeronasal organ contains neurons that recognize pheromones, the septal organ recognizes odorant and mechanical stimuli, and the neurons of the Grüneberg ganglion are sensitive to cool temperatures and certain volatile alarm signals. Within the olfactory sensory neuroepithelium, each sensory neuron expresses a single odorant receptor gene out of the large gene family; the axons of sensory neurons expressing the same odorant receptor typically converge onto a pair of glomeruli at the periphery of the olfactory bulb. This results in the transformation of olfactory information into a spatially organized odortopic map in the olfactory bulb. The axons originating from the vomeronasal organ project to the accessory olfactory bulb, whereas the axons from neurons in the Grüneberg ganglion project to 10 specific glomeruli found in the caudal part of the olfactory bulb. Within a glomerulus, the axons originating from olfactory sensory neurons synapse on the dendrites of olfactory bulb neurons, including mitral and tufted cells. Mitral cells and tufted cells in turn project directly to higher brain centers (e.g., the piriform cortex and olfactory tubercle). The integration of olfactory information in the olfactory cortices and elsewhere in the central nervous system informs and directs animal behavior.


‘Neuroanatomy and neurophysiology’ covers the anatomy and organization of the central nervous system, including the skull and cervical vertebrae, the meninges, the blood and lymphatic vessels, muscles and nerves of the head and neck, and the structures of the eye, ear, and central nervous system. At a cellular level, the different cell types and the mechanism of transmission across synapses are considered, including excitatory and inhibitory synapses. This is followed by a review of the major control and sensory systems (including movement, information processing, locomotion, reflexes, and the main five senses of sight, hearing, touch, taste, and smell). The integration of these processes into higher functions (such as sleep, consciousness and coma, emotion, memory, and ageing) is discussed, along with the causes and treatments of disorders of diseases such as depression, schizophrenia, epilepsy, addiction, and degenerative diseases.


Author(s):  
Christian J. Hendriksz ◽  
Francois Karstens

There are 8 different types of diseases of the mucopolysaccharides, each caused by a deficiency in one of 10 different enzymes involved in the degradation of glycosaminoglycans (GAGs). Partially degraded GAGs accumulate within the lysosomes of many different cell types and lead to clinical symptoms and excretion of large amounts of GAGs in the urine. Heritability is autosomal recessive except for MPS type II, which is X-linked. The disorders are chronic and progressive and, although the specific types all have their individual features, they share an abundance of clinical similarities. All involve the musculoskeletal, the cardiovascular, the pulmonary and the central nervous system.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Hannah N. Robeson ◽  
Hayley R. Lau ◽  
Laura A. New ◽  
Jasmin Lalonde ◽  
John N. Armstrong ◽  
...  

Abstract Background Mammalian Shc (Src homology and collagen) proteins comprise a family of four phosphotyrosine adaptor molecules which exhibit varied spatiotemporal expression and signaling functions. ShcD is the most recently discovered homologue and it is highly expressed in the developing central nervous system (CNS) and adult brain. Presently however, its localization within specific cell types of mature neural structures has yet to be characterized. Results In the current study, we examine the expression profile of ShcD in the adult rat CNS using immunohistochemistry, and compare with those of the neuronally enriched ShcB and ShcC proteins. ShcD shows relatively widespread distribution in the adult brain and spinal cord, with prominent levels of staining throughout the olfactory bulb, as well as in sub-structures of the cerebellum and hippocampus, including the subgranular zone. Co-localization studies confirm the expression of ShcD in mature neurons and progenitor cells. ShcD immunoreactivity is primarily localized to axons and somata, consistent with the function of ShcD as a cytoplasmic adaptor. Regional differences in expression are observed among neural Shc proteins, with ShcC predominating in the hippocampus, cerebellum, and some fiber tracts. Interestingly, ShcD is uniquely expressed in the olfactory nerve layer and in glomeruli of the main olfactory bulb. Conclusions Together our findings suggest that ShcD may provide a distinct signaling contribution within the olfactory system, and that overlapping expression of ShcD with other Shc proteins may allow compensatory functions in the brain.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Douglas M. Durrant ◽  
Jessica L. Williams ◽  
Brian P. Daniels ◽  
Robyn S. Klein

The discovery that chemokines and their receptors are expressed by a variety of cell types within the normal adult central nervous system (CNS) has led to an expansion of their repertoire as molecular interfaces between the immune and nervous systems. Thus, CNS chemokines are now divided into those molecules that regulate inflammatory cell migration into the CNS and those that initiate CNS repair from inflammation-mediated tissue damage. Work in our laboratory throughout the past decade has sought to elucidate how chemokines coordinate leukocyte entry and interactions at CNS endothelial barriers, under both homeostatic and inflammatory conditions, and how they promote repair within the CNS parenchyma. These studies have identified several chemokines, including CXCL12 and CXCL10, as critical regulators of leukocyte migration from perivascular locations. CXCL12 additionally plays an essential role in promoting remyelination of injured white matter. In both scenarios we have shown that chemokines serve as molecular links between inflammatory mediators and other effector molecules involved in neuroprotective processes.


As part of our attempts to understand principles that underly organism development, we have been studying the development of the rat optic nerve. This simple tissue is composed of three glial cell types derived from two distinct cellular lineages. Type-1 astrocytes appear to be derived from a monopotential neuroepithelial precursor, whereas type-2 astrocytes and oligodendrocytes are derived from a common oligodendrocyte-type-2 astrocyte (O-2A) progenitor cell. Type-1 astrocytes modulate division and differentiation of O-2A progenitor cells through secretion of platelet-derived growth factor, and can themselves be stimulated to divide by peptide mitogens and through stimulation of neurotransmitter receptors. In vitro analysis indicates that many dividing O-2A progenitors derived from optic nerves of perinatal rats differentiate symmetrically and clonally to give rise to oligodendrocytes, or can be induced to differentiate into type-2 astrocytes. O-2A perinatal progenitors can also differentiate to form a further O-2A lineage cell, the O-2A adult progenitor, which has properties specialized for the physiological requirements of the adult nervous system. In particular, O-2A adult progenitors have many of the features of stem cells, in that they divide slowly and asymmetrically and appear to have the capacity for extended self-renewal. The apparent derivation of a slowly and asymmetrically dividing cell, with properties appropriate for homeostatic maintenance of existing populations in the mature animal, from a rapidly dividing cell with properties suitable for the rapid population and myelination of central nervous system (CNS) axon tracts during early development, offers novel and unexpected insights into the possible origin of self-renewing stem cells and also into the role that generation of stem cells may play in helping to terminate the explosive growth of embryogenesis. Moreover, the properties of O-2A adult progenitor cells are consistent with, and may explain, the failure of successful myelin repair in conditions such as multiple sclerosis, and thus seem to provide a cellular biological basis for understanding one of the key features of an important human disease.


Sign in / Sign up

Export Citation Format

Share Document