scholarly journals Production, formulation and antagonistic activity of the biocontrol like-yeast Aureobasidium pullulans against Penicillium expansum

2007 ◽  
Vol 29 (4) ◽  
pp. 553-559 ◽  
Author(s):  
R. Mounir ◽  
A. Durieux ◽  
E. Bodo ◽  
C. Allard ◽  
J.-P. Simon ◽  
...  
2005 ◽  
Vol 68 (10) ◽  
pp. 2100-2106 ◽  
Author(s):  
G. LIMA ◽  
A. M. SPINA ◽  
R. CASTORIA ◽  
F. DE CURTIS ◽  
V. DE CICCO

Forty-nine compounds currently used as additives in foods were tested in combination with three biocontrol agents, the yeasts Rhodotorula glutinis, Cryptococcus laurentii, and the yeastlike fungus Aureobasidium pullulans, to increase their antagonistic activity against Penicillium expansum, the causal agent of blue mold on apples. Twelve additives dramatically improved the antagonistic activity of one or more of the tested biocontrol agents. In a two-way factorial experiment with these selected additives the percentage of P. expansum rots on apples was significantly influenced by the antagonist and the additive as well as by their interaction. The combination of the biocontrol agents and some additives resulted in a significantly higher activity with respect to the single treatments applied separately, producing additive or synergistic effects. Some of the selected additives combined with a low yeast concentration (106 cells per ml) had comparable or higher efficacy than the biocontrol agents applied alone at a 100-fold higher concentration (108 cells per ml). Some organic and inorganic calcium salts, natural gums, and some antioxidants displayed the best results. In general, the effect of each additive was specific to the biocontrol isolate used in the experiments. Possible mechanisms involved in the activity of these beneficial additives and their potential application in effective formulations of postharvest biofungicides are discussed.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 397
Author(s):  
Laura Settier-Ramírez ◽  
Gracia López-Carballo ◽  
Pilar Hernández-Muñoz ◽  
Angélique Fontana ◽  
Caroline Strub ◽  
...  

Wild yeasts isolated from the surface of apples were screened for antagonistic activity against Penicillium expansum, the main producer of the mycotoxin patulin. Three antagonistic yeasts (Y33, Y29 and Y24) from a total of 90 were found to inhibit P. expansum growth. Identification by ITS region sequence and characterization showed that three selected isolates of yeast should be different strains of Metschnikowia pulcherrima. Several concentrations of the selected yeasts were used to study their in vitro antifungal effectivity against P. expansum on Petri dishes (plates with 63.6 cm2 surface) whereas their potential activity on patulin reduction was studied in liquid medium. Finally, the BCA that had the best in vitro antifungal capacity against P. and the best patulin degradation capacity was selected to be assessed directly on apples. All the selected strains demonstrated antifungal activity in vitro but the most efficient was the strain Y29. Isolated strains were able to reduce patulin content in liquid medium, Y29 being the only strain that completely reduced patulin levels within 120 h. The application of Y29 as biocontrol agent on the surface of apples inoculated with P. expansum, inhibited fungal growth and patulin production during storage. Therefore, the results shown that this yeast strain could be used for the reduction of P. expansum and its mycotoxin in apples or apple-based products by adapting the procedure application.


1997 ◽  
Vol 87 (11) ◽  
pp. 1103-1110 ◽  
Author(s):  
Wolfgang Leibinger ◽  
Barbara Breuker ◽  
Matthias Hahn ◽  
Kurt Mendgen

Selected isolates of Aureobasidium pullulans, Rhodotorula glutinis, and Bacillus subtilis reduced the size and number of lesions on wounded apples caused by the postharvest pathogens Penicillium expansum, Botrytis cinerea, and Pezicula malicorticis. Combinations of the antagonistic microorganisms were applied to apple trees in the field late in the growing season of two consecutive years. The population dynamics of the introduced microorganisms and the incidence of fruit decay were determined. Population sizes of introduced antagonists on apple surfaces increased in the field following application of treatments until harvest. After transfer of the fruit from the field into cold storage, the populations of the introduced antagonists remained higher than in the control treatments. Identification of the applied isolates of A. pullulans and R. glutinis during the experiments was achieved by isolate-specific DNA probes generated from random amplified polymorphic DNA. A combination of two strains of A. pullulans and one strain of R. glutinis suppressed rotting of apple to the same extent as the commonly used fungicide Euparen. Our data demonstrate that the application of antagonistic microorganisms in the field represents a promising alternative to fungicide treatments to control post-harvest diseases of apple.


2013 ◽  
Vol 66 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Anna Wagner ◽  
Beata Hetman ◽  
Marek Kopacki ◽  
Agnieszka Jamiołkowska ◽  
Paweł Krawiec ◽  
...  

The efficacy of <em>Aureobasidium pullulans </em>(in the biopreparation Boni Protect) against different pathogens of apples (<em>Botrytis cinerea, Monilinia fructigena, Penicillium expansum, </em>and <em>Pezicula malicorticis</em>) was evaluated under laboratory con- ditions. The biocontrol product was applied at concentrations of 0.05%, 0.1%, and 0.5%. Fruits of apple cultivars 'Jonagold Decosta' and 'Pinova' were used. Boni Protect was very effective against <em>B. cinerea </em>on cv. 'Jonagold Decosta', reducing disease incidence by 55–83.8%. On 'Pinova' apples, this biological control product was the most efficient at earlier stages of the experiment. It inhibited grey mold by 65% after 5 days from inoculation and only by 14% after 20 days. On cv. 'Jonagold Decosta', Boni Protect at a concentration of 0.1% was also effective against <em>M. fructigena</em>, reducing brown rot by 31.4–74.5%, but its efficiency on cv. 'Pinova' was not significant. Blue mold caused by <em>P. expansum </em>was inhibited only slightly by the biocontrol product, while <em>P. malicorticis </em>proved to be the most resistant to its antagonistic abilities.


2008 ◽  
Vol 16 (1) ◽  
pp. 56 ◽  
Author(s):  
C. NUNES ◽  
J. USALL ◽  
N. TEIXIDÓ

Epiphytic micro-organisms isolated from fruits and leaves surfaces of apples from different orchards were screened for antagonistic activity against Penicillium expansum. From all micro-organisms tested the new strain CPA-5 of Pseudomonas syringae, isolated from organic orchard, was selected. This strain was very effective against Botrytis cinerea, P. expansum and Rhizopus stolonifer at various antagonist and pathogen concentrations on ‘Golden Delicious’ apple, and ‘Blanquilla’, ‘Rocha’ and ‘Conference’ pear. Under cold storage conditions and in semi-commercial trials P. syringae (CPA-5) significantly reduced development of P. expansum and B. cinerea on ‘Golden Delicious’ apple, and ‘Blanquilla’ and ‘Rocha’ pears. Control of P. expansum equal to the fungicide imazalil was obtained with CPA-5 at 108cfu ml–1 on ‘Gold Delicious’ apple and ‘Rocha’ pear. The populations of P. syringae CPA-5 increased more than 100-fold during the first 50 days, and then remained stable on apple, and slightly decreased on pears. This indicates the high capacity of this antagonist to colonize wound surfaces of pome fruits under cold storage conditions.;


Author(s):  
Paula Reyes-Bravo ◽  
Andrea Acuña-Fontecilla ◽  
Ines Marlene Rosales ◽  
Liliana Godoy

Changes in consumer expectations have led to increasing demand for novel plant protection strategies, in order to reduce the application of chemical products, reduce the occurrence of new pests and the impact that all these actions generate in the environment. In recent years there have been numerous investigations related to biological control and the use of microorganisms as new control strategies. As part of integrated disease management, antagonistic microorganisms have been investigated lately and presented great interest. Such microorganisms can be applied in conventional and in organic farming as biological control agents (BCA). Many of these microorganisms are present in the microbial ecology generating interactive associations between surrounding microorganisms. For these reasons, it has become necessary to search new natural antimicrobial agents as alternatives to synthetic and chemical products. It has been discovered that there are microorganisms, particularly yeasts, that have antagonistic activity and different mechanisms of action, indicating that they could be interesting candidates for the development of BCA. Here, we evaluate the antagonist effect of four endophytic yeast, Cryptococcus antarcticus, Aureobasidium pullulans, Cryptococcus terrestris and Cryptococcus oeirensis over the growth of Botrytis cinerea, Monilinia laxa, Penicillium expansum and Geotrichum candidum in in vitro assays (inhibition zone diameter assay and confrontation assay).The results revealed that the four yeast strains evaluated showed antagonistic activity against the phytopathogens tested, suggesting that these yeasts produce compounds capable of inhibiting the growth of fungi and, depending on the assay, the evaluated antagonist-yeasts have differential biocontrolling-effect against the postharvest pathogens tested.


Sign in / Sign up

Export Citation Format

Share Document