Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress

2006 ◽  
Vol 50 (4) ◽  
pp. 610-616 ◽  
Author(s):  
P. Stepien ◽  
G. Klbus
2018 ◽  
Vol 25 (6) ◽  
pp. 1102-1114 ◽  
Author(s):  
Abeer Hashem ◽  
Abdulaziz A. Alqarawi ◽  
Ramalingam Radhakrishnan ◽  
Al-Bandari Fahad Al-Arjani ◽  
Horiah Abdulaziz Aldehaish ◽  
...  

Author(s):  
Mubeen Sarwar ◽  
Muhammad Amjad ◽  
Sumreen Anjum ◽  
Muhammad Waqar Alam ◽  
Shahbaz Ahmad ◽  
...  

Salinity is an ancient environmental phenomenon and reflected as the most important process of land degradation. It is widespread at variable degrees across the world. A sand culture study was conducted in order to investigate the performance of exogenously applied triacontanol on two tolerant (Green long and Marketmore) and two sensitive (Summer green and 20252) genotypes of cucumber (Cucumis sativus L.) under salinity stress (NaCl 50 mM). The foliar application of triacontanol was carried out @ 0.20, 0.40, 0.60, 0.80, 1.00 and 1.20 mg L-1. Salinity caused significant reduction in growth rate, gas exchange and other physiological attributes. Results revealed that triacontanol seemed to relieve the harmful impact of salt stress by improving morpho-physiological attributes and decreasing membrane leakage. Genotypes Green long and Marketmore performed better under salt stress regarding all studied parameters than Summer green and 20252. However, foliar feeding of triacontanol significantly enriched the efficiency of sensitive genotypes under saline conditions. The highest values of different attributes of cucumber plants were observed with foliar application of 0.80 mg L-1 triacontanol. Hence, triacontanol can be effectively used as a mitigating agent to alleviate phytotoxic effects in plants under saline stress.


2016 ◽  
Vol 43 (11) ◽  
pp. 1016 ◽  
Author(s):  
Mirvat Redwan ◽  
Francesco Spinelli ◽  
Lucia Marti ◽  
Matthias Weiland ◽  
Emily Palm ◽  
...  

Salt stress, among other abiotic stresses, has a high impact on crop yield. Salt tolerance is a multifactorial trait that involves the ability of cells to retain K ions, regulate reactive O species (ROS) production, and synthesise new molecules to cope with osmotic stress. In the present work, two different cultivars of Cucumis sativus L. (cv. Parys, sensitive; cv. Polan, tolerant) were selected based on their germination capabilities under 100 mM NaCl. The capacity of these two cultivars to tolerate salt stress was analysed using several different physiological and genetic approaches. K+ fluxes from roots, as an immediate response to salinity, showed the higher ability of cv. Polan to maintain K+ compared with cv. Parys, according to the expression level of inward rectifying potassium channel 1 (AKT1). ROS production was also investigated in both cultivars and a higher basal ROS level was observed in cv. Polan than in cv. Parys. Concurrently, an increased basal level of respiratory burst oxidase homologue F (RBOHF) gene was also found, as well as a strong induction of the ethylene responsive factor 109 (ERF109) transcription factor after salt treatment in cv. Polan. Our data suggest that roots’ ability to retain K+, a higher level of RBOHF and a strong induction of ERF109 should all be considered important components for salt tolerance in C. sativus.


Plant Science ◽  
2004 ◽  
Vol 167 (3) ◽  
pp. 527-533 ◽  
Author(s):  
Zhujun Zhu ◽  
Guoqiang Wei ◽  
Juan Li ◽  
Qiongqiu Qian ◽  
Jingquan Yu

Author(s):  
Pakeeza Iqbal ◽  
Muhammad Awais Ghani ◽  
Basharat Ali ◽  
Muhammad Shahid ◽  
Qumer Iqbal ◽  
...  

Salinity is expected to be the major destructive abiotic stress that causes ionic and oxidative damage leading to growth reduction and ultimately plant death. Glutamic acid (GA) is an α-amino acid that is used by almost all living beings in the biosynthsis of proteins. Therefore, in the present study, we tried to investigate the effect of foliar application of glutamic acid (GA) on cucumber (Cucumis sativus L.) under altered salinity levels. Cucumber seedlings were grown in plastic pots under greenhouse conditions by applying four levels of salinity (0, 3 dS/m, 6 dS/m and 12 dS/m) and two levels of foliar applied GA (0, 10 mM). Salinity was induced by mixing the salt and soil before seed sowing; however, exogenous GA was applied when the vine length was reached up to maximum height. Morphological characters showed disruptive response under saline conditions especially in indigenous cultivar (local cucumber represented as V1). Enhanced activities of superoxide dismutase (0.29 u g-1 FW), guaiacol peroxidase (3.51 u g-1 FW) and ascorbate peroxidase (0.39 µmol AsA.mg-1 Chl min-1) were observed in salt-stressed cucumber leaves. Both varieties showed unusual behavior for malondialdehyde in decreasing manner with increasing salinity levels (2.0333 µmol g-1 FW at 12dS/m in local cultivar; while, 1.98 µmol g-1 FW at 12dS/m in hybrid cultivar SSC-228). However, exogenously applied GA played a beneficial role in promoting all morphological parameters under stress with increasing scavenging abilities against reactive oxygen species. Foliar application of GA improved plant defense mechanism with minimum destruction. Remarked calculations showed that under salt stress, GA improved plant stress tolerance against salinity by maximizing the growth rate.


2010 ◽  
Vol 167 (14) ◽  
pp. 1152-1156 ◽  
Author(s):  
Chenshuo Chang ◽  
Baolan Wang ◽  
Lei Shi ◽  
Yinxin Li ◽  
Lian Duo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document