respiratory burst oxidase homologue
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 2)

2020 ◽  
Vol 21 (15) ◽  
pp. 5556 ◽  
Author(s):  
Abdalmenem I. M. Hawamda ◽  
Adil Zahoor ◽  
Amjad Abbas ◽  
Muhammad Amjad Ali ◽  
Holger Bohlmann

Reactive oxygen species are a byproduct of aerobic metabolic processes but are also produced by plants in defense against pathogens. In addition, they can function as signaling molecules that control various aspects of plant life, ranging from developmental processes to responses to abiotic and biotic stimuli. In plants, reactive oxygen species can be produced by respiratory burst oxidase homologues. Arabidopsis contains 10 genes for respiratory burst oxidase homologues that are involved in different aspects of plant life. Plant pathogenic cyst nematodes such as Heterodera schachtii induce a syncytium in the roots of host plants that becomes a feeding site which supplies nutrients throughout the life of the nematode. In line with this function, the transcriptome of the syncytium shows drastic changes. One of the genes that is most strongly downregulated in syncytia codes for respiratory burst oxidase homologue B. This gene is root-specific and we confirm here the downregulation in nematode feeding sites with a promoter::GUS (β-glucuronidase) line. Overexpression of this gene resulted in enhanced resistance against nematodes but also against leaf-infecting pathogens. Thus, respiratory burst oxidase homologue B has a role in resistance. The function of this gene is in contrast to respiratory burst oxidase homologues D and F, which have been found to be needed for full susceptibility of Arabidopsis to H. schachtii. However, our bioinformatic analysis did not find differences between these proteins that could account for the opposed function in the interaction with nematodes.


2019 ◽  
Vol 258 ◽  
pp. 108777 ◽  
Author(s):  
Mintao Sun ◽  
Fangling Jiang ◽  
Rong Zhou ◽  
Junqin Wen ◽  
Shouyao Cui ◽  
...  

2019 ◽  
Vol 46 (2) ◽  
pp. 165 ◽  
Author(s):  
Xiaonan Ma ◽  
Xiaoran Zhang ◽  
Ling Yang ◽  
Mengmeng Tang ◽  
Kai Wang ◽  
...  

Abscisic acid (ABA) is a crucial factor that affects primary root tip growth in plants. Previous research suggests that reactive oxygen species (ROS), especially hydrogen peroxide, are important regulators of ABA signalling in root growth of Arabidopsis. PROLINE-RICH EXTENSIN-LIKE RECEPTOR KINASE 4 (PERK4) plays an important role in ABA responses. Arabidopsis perk4 mutants display attenuated sensitivity to ABA, especially in primary root growth. To gain insights into the mechanism(s) of PERK4-associated ABA inhibition of root growth, in this study we investigated the involvement of ROS in this process. Normal ROS accumulation in the primary root in response to exogenous ABA treatment was not observed in perk4 mutants. PERK4 deficiency prohibits ABA-induced expression of RESPIRATORY BURST OXIDASE HOMOLOGUE (RBOH) genes, therefore the perk4-1 mutant showed decreased production of ROS in the root. The perk4-1/rbohc double mutant displayed the same phenotype as the perk4 and rbohc single mutants in response to exogenous ABA treatment. The results suggest that PERK4-stimulated ROS accumulation during ABA-regulated primary root growth may be mediated by RBOHC.


2016 ◽  
Vol 43 (11) ◽  
pp. 1016 ◽  
Author(s):  
Mirvat Redwan ◽  
Francesco Spinelli ◽  
Lucia Marti ◽  
Matthias Weiland ◽  
Emily Palm ◽  
...  

Salt stress, among other abiotic stresses, has a high impact on crop yield. Salt tolerance is a multifactorial trait that involves the ability of cells to retain K ions, regulate reactive O species (ROS) production, and synthesise new molecules to cope with osmotic stress. In the present work, two different cultivars of Cucumis sativus L. (cv. Parys, sensitive; cv. Polan, tolerant) were selected based on their germination capabilities under 100 mM NaCl. The capacity of these two cultivars to tolerate salt stress was analysed using several different physiological and genetic approaches. K+ fluxes from roots, as an immediate response to salinity, showed the higher ability of cv. Polan to maintain K+ compared with cv. Parys, according to the expression level of inward rectifying potassium channel 1 (AKT1). ROS production was also investigated in both cultivars and a higher basal ROS level was observed in cv. Polan than in cv. Parys. Concurrently, an increased basal level of respiratory burst oxidase homologue F (RBOHF) gene was also found, as well as a strong induction of the ethylene responsive factor 109 (ERF109) transcription factor after salt treatment in cv. Polan. Our data suggest that roots’ ability to retain K+, a higher level of RBOHF and a strong induction of ERF109 should all be considered important components for salt tolerance in C. sativus.


2010 ◽  
Vol 23 (9) ◽  
pp. 1143-1150 ◽  
Author(s):  
Reinhard K. Proels ◽  
Kathrin Oberhollenzer ◽  
Indira Priyadarshini Pathuri ◽  
Götz Hensel ◽  
Jochen Kumlehn ◽  
...  

Plant respiratory burst oxidase homologs are prominent sources of reactive oxygen species (ROS) in signal transduction and in interaction with microbes. However, the function of respiratory burst oxidase homologue (RBOH) genes in interaction with microbes might differ for certain plant and pathogen species. We produced transgenic barley knock down (KD) for the HvRBOHF2 isoform of NADPH oxidases. Young HvRBOHF2 KD shoots did not show obvious morphological alterations from the wild type but adult HvRBOHF2 KD plants developed fewer tillers, were less fertile, and showed spontaneous cell death in leaf mesophyll. Additionally, HvRBOHF2 KD plants were unable to contain wound-induced cell death. Before developmental failure became obvious, young HvRBOHF2 KD seedlings were much more susceptible to penetration by the biotrophic powdery mildew fungus Blumeria graminis f. sp. hordei. Strikingly, the B. graminis f. sp. hordei-induced cell-wall-associated oxidative burst was not substantially attenuated in HvRBOHF2 KD plants but enhanced susceptibility apparently influenced the subcellular site of hydrogen peroxide accumulation. Taken together, misexpression of HvRBOHF2 caused failure of barley to normally develop penetration resistance to B. graminis f. sp. hordei and to control leaf cell death.


Sign in / Sign up

Export Citation Format

Share Document