scholarly journals Characterization of Citrus WRKY transcription factors and their responses to phytohormones and abiotic stresses

2018 ◽  
Vol 62 (1) ◽  
pp. 33-44 ◽  
Author(s):  
V. Vives-Peris ◽  
D. Marmaneu ◽  
A. Gomez-Cadenas ◽  
R. M. Perez-Clemente

2016 ◽  
Vol 60 (3) ◽  
pp. 489-495 ◽  
Author(s):  
P.-F. Xin ◽  
C.-S. Gao ◽  
C.-H. Cheng ◽  
Q. Tang ◽  
Z.-X. Dong ◽  
...  




2018 ◽  
Vol 127 ◽  
pp. 525-536 ◽  
Author(s):  
Qi Cui ◽  
Xiao Yan ◽  
Xue Gao ◽  
Dong-mei Zhang ◽  
Heng-bin He ◽  
...  




2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chunhua Chen ◽  
Xueqian Chen ◽  
Jing Han ◽  
Wenli Lu ◽  
Zhonghai Ren

Abstract Background Cucumber (Cucumis sativus L.) is an economically important vegetable crop species. However, it is susceptible to various abiotic and biotic stresses. WRKY transcription factors play important roles in plant growth and development, particularly in the plant response to biotic and abiotic stresses. However, little is known about the expression pattern of WRKY genes under different stresses in cucumber. Results In the present study, an analysis of the new assembly of the cucumber genome (v3.0) allowed the identification of 61 cucumber WRKY genes. Phylogenetic and synteny analyses were performed using related species to investigate the evolution of the cucumber WRKY genes. The 61 CsWRKYs were classified into three main groups, within which the gene structure and motif compositions were conserved. Tissue expression profiles of the WRKY genes demonstrated that 24 CsWRKY genes showed constitutive expression (FPKM > 1 in all samples), and some WRKY genes showed organ-specific expression, suggesting that these WRKYs might be important for plant growth and organ development in cucumber. Importantly, analysis of the CsWRKY gene expression patterns revealed that five CsWRKY genes strongly responded to both salt and heat stresses, 12 genes were observed to be expressed in response to infection from downy mildew and powdery mildew, and three CsWRKY genes simultaneously responded to all treatments analysed. Some CsWRKY genes were observed to be induced/repressed at different times after abiotic or biotic stress treatment, demonstrating that cucumber WRKY genes might play different roles during different stress responses and that their expression patterns vary in response to stresses. Conclusions Sixty-one WRKY genes were identified in cucumber, and insight into their classification, evolution, and expression patterns was gained in this study. Responses to different abiotic and biotic stresses in cucumber were also investigated. Our results provide a better understanding of the function of CsWRKY genes in improving abiotic and biotic stress resistance in cucumber.



2021 ◽  
Vol 22 (10) ◽  
pp. 5354
Author(s):  
Jinhong Kan ◽  
Guangqi Gao ◽  
Qiang He ◽  
Qian Gao ◽  
Congcong Jiang ◽  
...  

The WRKY transcription factors (WRKYs) are known for their crucial roles in biotic and abiotic stress responses, and developmental and physiological processes. In barley, early studies revealed their importance, whereas their diversity at the population scale remains hardly estimated. In this study, 98 HsWRKYs and 103 HvWRKYs have been identified from the reference genome of wild and cultivated barley, respectively. The tandem duplication and segmental duplication events from the cultivated barley were observed. By taking advantage of early released exome-captured sequencing datasets in 90 wild barley accessions and 137 landraces, the diversity analysis uncovered synonymous and non-synonymous variants instead of loss-of-function mutations that had occurred at all WRKYs. For majority of WRKYs, the haplotype and nucleotide diversity both decreased in cultivated barley relative to the wild population. Five WRKYs were detected to have undergone selection, among which haplotypes of WRKY9 were enriched, correlating with the geographic collection sites. Collectively, profiting from the state-of-the-art barley genomic resources, this work represented the characterization and diversity of barley WRKY transcription factors, shedding light on future deciphering of their roles in barley domestication and adaptation.



Sign in / Sign up

Export Citation Format

Share Document