scholarly journals Genome-wide analysis of the WRKY gene family in the cucumber genome and transcriptome-wide identification of WRKY transcription factors that respond to biotic and abiotic stresses

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chunhua Chen ◽  
Xueqian Chen ◽  
Jing Han ◽  
Wenli Lu ◽  
Zhonghai Ren

Abstract Background Cucumber (Cucumis sativus L.) is an economically important vegetable crop species. However, it is susceptible to various abiotic and biotic stresses. WRKY transcription factors play important roles in plant growth and development, particularly in the plant response to biotic and abiotic stresses. However, little is known about the expression pattern of WRKY genes under different stresses in cucumber. Results In the present study, an analysis of the new assembly of the cucumber genome (v3.0) allowed the identification of 61 cucumber WRKY genes. Phylogenetic and synteny analyses were performed using related species to investigate the evolution of the cucumber WRKY genes. The 61 CsWRKYs were classified into three main groups, within which the gene structure and motif compositions were conserved. Tissue expression profiles of the WRKY genes demonstrated that 24 CsWRKY genes showed constitutive expression (FPKM > 1 in all samples), and some WRKY genes showed organ-specific expression, suggesting that these WRKYs might be important for plant growth and organ development in cucumber. Importantly, analysis of the CsWRKY gene expression patterns revealed that five CsWRKY genes strongly responded to both salt and heat stresses, 12 genes were observed to be expressed in response to infection from downy mildew and powdery mildew, and three CsWRKY genes simultaneously responded to all treatments analysed. Some CsWRKY genes were observed to be induced/repressed at different times after abiotic or biotic stress treatment, demonstrating that cucumber WRKY genes might play different roles during different stress responses and that their expression patterns vary in response to stresses. Conclusions Sixty-one WRKY genes were identified in cucumber, and insight into their classification, evolution, and expression patterns was gained in this study. Responses to different abiotic and biotic stresses in cucumber were also investigated. Our results provide a better understanding of the function of CsWRKY genes in improving abiotic and biotic stress resistance in cucumber.

2020 ◽  
Author(s):  
Chunhua Chen ◽  
Xueqian Chen ◽  
Jing Han ◽  
Wenli Lu ◽  
Zhonghai Ren

Abstract Background: Cucumber ( Cucumis sativus L.) is an economically important vegetable crop species. However, it is susceptible to various abiotic and biotic stresses. WRKY transcription factors play important roles in plant growth and development, particularly in the plant response to biotic and abiotic stresses. However, little is known about the expression pattern of WRKY genes under different stresses in cucumber. Results: In the present study, an analysis of the new assembly of the cucumber genome (v3.0) allowed the identification of 61 cucumber WRKY genes. Phylogenetic and synteny analyses were performed using related species to investigate the evolution of the cucumber WRKY genes. The 61 CsWRKYs were classified into three main groups, within which the gene structure and motif compositions were conserved. Tissue expression profiles of the WRKY genes demonstrated that 24 CsWRKY genes showed constitutive expression (FPKM > 1 in all samples), and some WRKY genes showed organ-specific expression, suggesting that these WRKYs might be important for plant growth and organ development in cucumber. Importantly, analysis of the CsWRKY gene expression patterns revealed that 7 CsWRKY genes strongly responded to both salt and heat stresses, 12 genes were observed to be expressed in response to infection from downy mildew and powdery mildew, and three CsWRKY genes simultaneously responded to all treatments analysed. Some CsWRKY genes were observed to be induced/repressed at different times after abiotic or biotic stress treatment, demonstrating that cucumber WRKY genes might play different roles during different stress responses and that their expression patterns vary in response to stresses. Conclusions: Sixty-one WRKY genes were identified in cucumber, and insight into their classification, evolution, and expression patterns was gained in this study. Responses to different abiotic and biotic stresses in cucumber were also investigated. Our results provide a better understanding of the function of Cs WRKY genes in improving abiotic and biotic stress resistance in cucumber.


2020 ◽  
Author(s):  
Haley S. Toups ◽  
Noé Cochetel ◽  
Dennis Gray ◽  
Grant R. Cramer

Abstract Background: VviERF6Ls are an uncharacterized gene clade in Vitis with only distant Arabidopsis orthologs. Preliminary data indicated these transcription factors may play a role in berry development and extreme abiotic stress responses. To better understand this highly duplicated, conserved clade, additional members of the clade were identified in four Vitis genotypes. A meta-data analysis was performed on publicly available microarray and RNA-Seq data (confirmed and expanded with RT-qPCR), and Vitis VviERF6L1 overexpression lines were established and characterized with phenotyping and RNA-Seq. Results: A total of 18 PN40024 VviERF6Ls were identified; additional VviERF6Ls were identified in Cabernet Sauvignon, Chardonnay, and Carménère. The amino acid sequences of VviERF6Ls were found to be highly conserved. VviERF6L transcripts were detected in numerous plant organs and were differentially expressed in response to numerous abiotic stresses including water deficit, salinity, and cold as well as biotic stresses such as red blotch virus, N. parvum , and E. necator . VviERF6Ls were differentially expressed across stages of berry development, peaking in the pre-veraison/veraison stage and retaining conserved expression patterns across different vineyards, years, and Vitis cultivars. Co-expression network analysis identified a scarecrow-like transcription factor and a calmodulin-like gene with highly similar expression profiles to the VviERF6L clade. Overexpression of VviERF6L1 in a Seyval Blanc background did not result in detectable morphological phenotypes. Genes differentially expressed in response to VviERF6L1 overexpression were associated with abiotic and biotic stress responses. Conclusions: VviERF6Ls represent a large and distinct clade of ERF transcription factors in grapevine. The high conservation of protein sequence between these 18 transcription factors may indicate these genes originate from a duplication event in Vitis . Despite high sequence similarity and similar expression patterns, VviERF6Ls demonstrate unique levels of expression supported by similar but heterogeneous promoter sequences. VviERF6L gene expression differed between Vitis species, cultivars and organs including roots, leaves and berries. These genes respond to berry development and abiotic and biotic stresses. VviERF6L1 overexpression in Vitis vinifera results in differential expression of genes related to phytohormone and immune system signaling. Further investigation of this interesting gene family is warranted.


Author(s):  
Sandeep Kaur Dhaliwal ◽  
Pooja Salaria ◽  
Prashant Kaushik

French bean (Phaseolus vulgaris L.) a member of family Leguminosae is a useful source of protein (∼22%), minerals (folate), vitamins and fibre. Abiotic and biotic stresses are the constraints to high yield and production of French bean. Varieties reluctant to diseases as well as abiotic stresses is among the top breeding objectives for the French bean. Mendelian ratios could know the genetically reliable forms of resistance, whereas it's more robust to understand the intricate kinds, often referred to as quantitative trait loci (QTL). Here, we review and compile the information from the studies related to the identification of QTLs for critical biofortification traits, biotic and abiotic stresses in French bean. Successful map-based cloning requires QTLs represent single genes which could be isolated in near-isogenic lines, and also the genotypes could be unambiguously inferred by progeny testing. Overall, this information will be useful for directing the French bean breeders to select a suitable method for the inheritance evaluation of quantitative traits and determining the novel genes in germplasm resources to ensure that much more potential of genetic information may be uncovered.


2020 ◽  
Author(s):  
Haley S. Toups ◽  
Noé Cochetel ◽  
Dennis Gray ◽  
Grant R. Cramer

Abstract Background VviERF6Ls are an uncharacterized gene clade in Vitis with only distant Arabidopsis orthologs. Preliminary data indicated these transcription factors may play a role in berry development and extreme abiotic stress responses. To better understand this highly duplicated, conserved clade, additional members of the clade were identified in four Vitis genotypes. A meta-data analysis was performed on publicly available microarray and RNA-Seq data (confirmed and expanded with RT-qPCR), and a Vitis VviERF6L1 overexpression line was established and characterized with phenotyping and RNA-Seq. Results A total of 18 PN40024 VviERF6Ls were identified; additional VviERF6Ls were identified in Cabernet Sauvignon, Chardonnay, and Carménère. The amino acid sequences of VviERF6Ls were found to be highly conserved. VviERF6L transcripts were detected in numerous plant organs and were differentially expressed in response to numerous abiotic stresses including water deficit, salinity, and cold as well as biotic stresses such as red blotch virus, N. parvum , and E. necator . VviERF6Ls were differentially expressed across stages of berry development, peaking in the pre-veraison/veraison stage, and retaining conserved expression patterns across different vineyards, years, and Vitis cultivars. Co-expression network analysis identified a scarecrow-like transcription factor and a calmodulin-like gene with highly similar expression profiles to the VviERF6L clade. Overexpression of VviERF6L1 in a Seyval Blanc background did not result in detectable morphological phenotypes. Genes differentially expressed in response to VviERF6L1 overexpression were associated with abiotic and biotic stress responses. Conclusions VviERF6Ls represent a large and distinct clade of ERF transcription factors in grapevine. The high conservation of protein sequence between these 18 transcription factors may indicate these genes originate from a duplication event in Vitis . Despite high sequence similarity and similar expression patterns, VviERF6Ls demonstrate unique levels of expression supported by similar but heterogeneous promoter sequences. VviERF6L gene expression differed between Vitis species, cultivars and organs including roots, leaves and berries. These genes respond to berry development and abiotic and biotic stresses. VviERF6L1 overexpression in Vitis vinifera results in differential expression of genes related to phytohormone and immune system signaling. Further investigation of this interesting gene family is warranted.


Author(s):  
Aswini Nunavath ◽  
K. Gopala Krishna Murthy ◽  
Venkatraman Hegde ◽  
S. Madhusudan Reddy

Chickpea is one of the most important pulse crop cultivated across the globe which is conventionally a low-input crop that is being cultivated mostly in moisture deficient rainfed environments during post-rainy season. The crop is being severely affected with various biotic and abiotic stresses among which, drought and heat stress are considered as serious constraints limiting chickpea productivity in sub-tropical regions. Several strategies were adopted to enhance the productivity under drought and heat stress environments among which, the development of early flowering varieties is one of the key strategies gaining importance in recent past. Some of the early / super early varieties like ICCV 2, JG 11, JG 14, KAK 2, JAKI 9218, ICCV 96029 and ICCV 96030 were developed during the last three decades. One of the most significant milestones in breeding for early varieties is the identification of four genes efl-1, efl-2, efl-3 and efl-4 governing early flowering by using various lines viz., ICCV 2, ICCV 96029, ICC 5810, BGD 132 and ICC 16641. Several QTLs controlling time of flowering were also mapped on linkage groups LG1, LG2, LG3, LG4, LG5, LG6 and LG8. The information on inheritance of time of flowering, correlation between early flowering with other yield attributing traits like number of pods per plant, number of seeds per pod, seed size, 100-seed weight, identified QTLs for early flowering and abiotic and biotic stresses tolerance may be useful for developing early maturing varieties that posses tolerance to various abiotic stresses by using different conventional and biotechnological approaches.


2020 ◽  
Vol 7 (2) ◽  
pp. 81-84
Author(s):  
Prajwal P. Dongare ◽  
Prashant R. Shingote ◽  
Narsing D. Parlawar

Chitosan is a second most abundant naturally occurring polysaccharide after cellulose derived from chitin which commercially produced from seafood shells, fungi (Aspergillus and mucus) and also from algae by alkaline deacetylation of chitin. It is bio adhesive, biocompatible, biodegradable, organic molecule. Chitosan has wide spread application in agriculture. Chitosan acts as bio-stimulant which upon application to plants stimulates photosynthetic rate, enhances antioxidant production, increases tolerance to biotic and abiotic stresses. Chitosan causes hydrolysis of peptidoglycan of microbes resulting to death of microbes. Recent studies have shown that chitosan induces mechanisms in plants against various biotic and abiotic stresses and helps in formation of barriers that enhances plant's productivity.This paper takes a closer look at the genesis, structural alteration and physiological responses of chitosan foliar applications on plants.As, Abiotic stresses is an important multidimensional environment stresses that damage plant’s physiology, biochemical propertIes and Molecular traits. Chitosan help to combat abiotic and biotic stresses.


Sign in / Sign up

Export Citation Format

Share Document