A comparison of transferrin-receptor and epithelial cellular adhesion molecule targeting for microfluidic separation of cancer cells

2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Xiao Li ◽  
Yun Zhou ◽  
Bhagya Wickramaratne ◽  
Yijia Yang ◽  
Dimitri Pappas
2012 ◽  
Vol 23 (1) ◽  
pp. 35-40
Author(s):  
Ayşe Yıldırım ◽  
Aysu T. Karaağaç ◽  
Fusun Güzelmeriç ◽  
Nihat Çine ◽  
Naci C. Öner

AbstractBackgroundThe aim of our study was to compare the blood levels of adhesion molecules in children with different heart diseases and pulmonary flow rates.MethodsIn this study, we evaluated the levels of soluble intercellular adhesion molecule-1 and soluble vascular cellular adhesion molecule-1 in blood samples of 65 children with different congenital heart diseases. The patients were divided into four groups according to their pulmonary blood flow. The first group had increased pulmonary blood flow with pulmonary hypertension and left-to-right shunt. The second group had increased pulmonary blood flow without pulmonary hypertension and left-to-right shunt. The third group had decreased pulmonary blood flow with cyanotic congenital heart disease and the fourth group had normal pulmonary blood flow with left ventricle outflow tract obstruction and aortic stenosis.ResultThe highest soluble intercellular and vascular cellular adhesion molecule-1 levels with the mean values of 420.2 nanograms per millilitre and 1382.1 nanograms per millilitre, respectively, were measured in the first group and the lowest levels with the mean values of 104.4 and 358.6 nanograms per millilitre, respectively, were measured in the fourth group. The highest pulmonary blood pressure levels were found in the first group.ConclusionEndothelial activity is influenced not only by left-to-right shunt with pulmonary hypertension, but also by decreased pulmonary blood flow in cyanotic heart diseases. Adhesion molecules are valuable markers of endothelial activity in congenital heart diseases, and they are influenced by pulmonary blood flow rate.


2004 ◽  
Vol 24 (19) ◽  
pp. 8691-8704 ◽  
Author(s):  
Masashi Akaike ◽  
Wenyi Che ◽  
Nicole-Lerner Marmarosh ◽  
Shinsuke Ohta ◽  
Masaki Osawa ◽  
...  

ABSTRACT Peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors that form a subfamily of the nuclear receptor gene family. Since both flow and PPARγ have atheroprotective effects and extracellular signal-regulated kinase 5 (ERK5) kinase activity is significantly increased by flow, we investigated whether ERK5 kinase regulates PPARγ activity. We found that activation of ERK5 induced PPARγ1 activation in endothelial cells (ECs). However, we could not detect PPARγ phosphorylation by incubation with activated ERK5 in vitro, in contrast to ERK1/2 and JNK, suggesting a role for ERK5 as a scaffold. Endogenous PPARγ1 was coimmunoprecipitated with endogenous ERK5 in ECs. By mammalian two-hybrid analysis, we found that PPARγ1 associated with ERK5a at the hinge-helix 1 region of PPARγ1. Expressing a hinge-helix 1 region PPARγ1 fragment disrupted the ERK5a-PPARγ1 interaction, suggesting a critical role for hinge-helix 1 region of PPARγ in the ERK5-PPARγ interaction. Flow increased ERK5 and PPARγ1 activation, and the hinge-helix 1 region of the PPARγ1 fragment and dominant negative MEK5β significantly reduced flow-induced PPARγ activation. The dominant negative MEK5β also prevented flow-mediated inhibition of tumor necrosis factor alpha-mediated NF-κB activation and adhesion molecule expression, including vascular cellular adhesion molecule 1 and E-selectin, indicating a physiological role for ERK5 and PPARγ activation in flow-mediated antiinflammatory effects. We also found that ERK5 kinase activation was required, likely by inducing a conformational change in the NH2-terminal region of ERK5 that prevented association of ERK5 and PPARγ1. Furthermore, association of ERK5a and PPARγ1 disrupted the interaction of SMRT and PPARγ1, thereby inducing PPARγ activation. These data suggest that ERK5 mediates flow- and ligand-induced PPARγ activation via the interaction of ERK5 with the hinge-helix 1 region of PPARγ.


2015 ◽  
Author(s):  
Osama H. Jiffri ◽  
Fadwa M. Al-Sharif ◽  
Essam H. Jiffri ◽  
Vladimir N. Uversky

Type 2 diabetes mellitus (T2DM) is a chronic and progressive disease that is strongly associated with the all-cause and cardiovascular mortality. The present study aimed to analyze the abundance and functionality of intrinsically disordered regions in several biomarkers of insulin resistance, adiponectin, and endothelial dysfunction found in the T2DM patients. In fact, in comparison to controls, obese T2DM patients are known to have significantly higher levels of inter-cellular adhesion molecule (iCAM-1), vascular cell adhesion molecule (vCAM-1), and E-selectin, whereas their adiponectin levels are relatively low. Bioinformatics analysis revealed that these selected biomarkers (iCAM-1, vCAM-1, E-selectin, and adiponectin) are characterized by the noticeable levels of intrinsic disorder propensity and high binding promiscuity, which are important features expected for proteins serving as biomarkers. Within the limit of studied groups, there is an association between insulin resistance and both hypoadiponectinemia and endothelial dysfunction.


2010 ◽  
Vol 13 (2-3) ◽  
pp. 237-241 ◽  
Author(s):  
Florinda Listì ◽  
Calogero Caruso ◽  
Daniele Di Carlo ◽  
Colomba Falcone ◽  
Chiara Boiocchi ◽  
...  

2002 ◽  
Vol 30 (6) ◽  
pp. 537-545 ◽  
Author(s):  
Reiner Lammers ◽  
Christina Giesert ◽  
Frank Grünebach ◽  
Anke Marxer ◽  
Wichard Vogel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document