Land-Surface Heterogeneity Effects in the Planetary Boundary Layer

2013 ◽  
Vol 150 (1) ◽  
pp. 1-31 ◽  
Author(s):  
Brian P. Reen ◽  
David R. Stauffer ◽  
Kenneth J. Davis
2020 ◽  
Author(s):  
Jason Simon ◽  
Khaled Ghannam ◽  
Gabriel Katul ◽  
Paul Dirmeyer ◽  
Kirsten Findell ◽  
...  

<p>Land-surface heterogeneity is known to play an important role in land surface hydrology and thus the boundary conditions for numerical weather prediction (NWP) and climate modeling. For this reason, there have been considerable efforts over the past two decades to improve its representation in large scale models. However, to date, the inclusion of sub-grid heterogeneity in modeling land-atmosphere interactions in regional and global models has been limited to sub-grid spatial means and thus have almost entirely disregarded its multi-scale impact on the simulated atmospheric dynamics. To begin to address this challenge, here we use large-eddy simulations (LES) coupled to a land-surface model to gain a more complete understanding of its role in the coupled land-atmosphere system. In this work, we illustrate its impact over the Southern Great Plains (SGP) site in the United States and present a path forward for using these modeling experiments to guide the development of a complementary coupling parameterization within climate models.</p><p>More specifically, over the SGP site, we use high-resolution LES to investigate the impact of SGS land heterogeneity under different atmospheric and surface conditions to inform the development of land-surface and planetary boundary layer (PBL) parameterizations for coarser, operational-scale weather and climate modeling efforts. The experiment methodology uses a high-resolution land-surface model (WRF-Hydro), spun-up over multiple years using reanalysis data, which is then coupled to the Weather Research and Forecasting (WRF) model for high-resolution LES. Cases are considered using both the fully heterogeneous land model as well as using a homogeneous surface with domain-averaged flux values at all grid points, allowing the dynamical effects of land-surface heterogeneity on the atmosphere to be isolated, and the land/atmospheric conditions under which land-surface heterogeneity plays a role to be studied. Results are evaluated primarily by the differences in the development of the planetary boundary layer and the extent, duration and intensity of developing rainfall events.</p>


2020 ◽  
Author(s):  
Brian Butterworth ◽  
Ankur Desai ◽  
Sreenath Paleri ◽  
Stefan Metzger ◽  
David Durden ◽  
...  

<p>Land surface heterogeneity influences patterns of sensible and latent heat flux, which in turn affect processes in the atmospheric boundary layer. However, gridded atmospheric models often fail to incorporate the influence of land surface heterogeneity due to differences between the temporal and spatial scales of models compared to the local, sub-grid processes. Improving models requires the scaling of surface flux measurements; a process made difficult by the fact that surface measurements usually find an imbalance in the energy budget.</p><p>The Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors (CHEESEHEAD19) was an observational experiment designed to investigate how the atmospheric boundary layer responds to scales of spatial heterogeneity in surface-atmosphere heat and water exchanges. The campaign was conducted from June – October 2019, measuring surface energy fluxes over a heterogeneous forest ecosystem as fluxes transitioned from latent heat-dominated summer through sensible heat-dominated fall. Observations were made by ground, airborne, and satellite platforms within the 10 x 10 km study region, which was chosen to match the scale of a typical model grid cell. The spatial distribution of energy fluxes was observed by an array of 20 eddy covariance towers and a low-flying aircraft. Mesoscale atmospheric properties were measured by a suite of LiDAR and sounding instruments, measuring winds, water vapor, temperature, and boundary layer development. Plant phenology was measured in-situ and mapped remotely using hyperspectral imaging.</p><p>The dense set of multi-scale observations of land-atmosphere exchange collected during the CHEESEHEAD field campaign permits combining the spatial and temporal distribution of energy fluxes with mesoscale surface and atmospheric properties. This provides an unprecedented data foundation to evaluate theoretical explanations of energy balance non-closure, as well as to evaluate methods for scaling surface energy fluxes for improved model-data comparison. Here we show how fluxes calculated using a spatial eddy covariance technique across the 20-tower network compare to those of standard temporal eddy covariance fluxes in order to characterize of the spatial representativeness of single tower eddy covariance measurements. Additionally, we show how spatial EC fluxes can be used to better understand the energy balance over heterogeneous ecosystems.</p>


2009 ◽  
Vol 133 (3) ◽  
Author(s):  
Yuling Wu ◽  
Udaysankar S. Nair ◽  
Roger A. Pielke ◽  
Richard T. McNider ◽  
Sundar A. Christopher ◽  
...  

2003 ◽  
Vol 3 (1) ◽  
pp. 797-825 ◽  
Author(s):  
O. Couach ◽  
I Balin ◽  
R. Jiménez ◽  
P. Ristori ◽  
S. Perego ◽  
...  

Abstract. This paper concerns an evaluation of ozone (O3) and planetary boundary layer (PBL) dynamics over the complex topography of the Grenoble region through a combination of measurements and mesoscale model (METPHOMOD) predictions for three days, during July 1999. The measurements of O3 and PBL structure were obtained with a Differential Absorption Lidar (DIAL) system, situated 20 km south of Grenoble at Vif (310 m a.s.l.). The combined lidar observations and model calculations are in good agreement with atmospheric measurements obtained with an instrumented aircraft (METAIR). Ozone fluxes were calculated using lidar measurements of ozone vertical profiles concentrations and the horizontal wind speeds measured with a Radar Doppler wind profiler (DEGREANE). The ozone flux patterns indicate that the diurnal cycle of ozone production is controlled by local thermal winds. The convective PBL maximum height was some 2700 m above the land surface while the nighttime residual ozone layer was generally found between 1200 and 2200 m. Finally we evaluate the magnitude of the ozone processes at different altitudes in order to estimate the photochemical ozone production due to the primary pollutants emissions of Grenoble city and the regional network of automobile traffic.


2014 ◽  
Vol 18 (10) ◽  
pp. 1-32 ◽  
Author(s):  
Olivia Kellner ◽  
Dev Niyogi

Abstract Land surface heterogeneity affects mesoscale interactions, including the evolution of severe convection. However, its contribution to tornadogenesis is not well known. Indiana is selected as an example to present an assessment of documented tornadoes and land surface heterogeneity to better understand the spatial distribution of tornadoes. This assessment is developed using a GIS framework taking data from 1950 to 2012 and investigates the following topics: temporal analysis, effect of ENSO, antecedent rainfall linkages, population density, land use/land cover, and topography, placing them in the context of land surface heterogeneity. Spatial analysis of tornado touchdown locations reveals several spatial relationships with regard to cities, population density, land-use classification, and topography. A total of 61% of F0–F5 tornadoes and 43% of F0–F5 tornadoes in Indiana have touched down within 1 km of urban land use and land area classified as forest, respectively, suggesting the possible role of land-use surface roughness on tornado occurrences. The correlation of tornado touchdown points to population density suggests a moderate to strong relationship. A temporal analysis of tornado days shows favored time of day, months, seasons, and active tornado years. Tornado days for 1950–2012 are compared to antecedent rainfall and ENSO phases, which both show no discernible relationship with the average number of annual tornado days. Analysis of tornado touchdowns and topography does not indicate any strong relationship between tornado touchdowns and elevation. Results suggest a possible signature of land surface heterogeneity—particularly that around urban and forested land cover—in tornado climatology.


Sign in / Sign up

Export Citation Format

Share Document