High Resolution HIRLAM Simulations of the Role of Low-Level Sea-Breeze Convergence in Initiating Deep Moist Convection in the Eastern Iberian Peninsula

2014 ◽  
Vol 154 (1) ◽  
pp. 81-100 ◽  
Author(s):  
Cesar Azorin-Molina ◽  
Sander Tijm ◽  
Elizabeth E. Ebert ◽  
Sergio-M. Vicente-Serrano ◽  
Maria-Jose Estrela
Author(s):  
Christopher A. Davis

Abstract The Sierras de Córdoba (SDC) mountain range in Argentina is a hotspot of deep moist convection initiation (CI). Radar climatology indicates that 44% of daytime CI events that occur near the SDC in spring and summer seasons and that are not associated with the passage of a cold front or an outflow boundary involve a northerly LLJ, and these events tend to preferentially occur over the southeast quadrant of the main ridge of the SDC. To investigate the physical mechanisms acting to cause CI, idealized convection-permitting numerical simulations with a horizontal grid spacing of 1 km were conducted using CM1. The sounding used for initializing the model featured a strong northerly LLJ, with synoptic conditions resembling those in a previously postulated conceptual model of CI over the region, making it a canonical case study. Differential heating of the mountain caused by solar insolation in conjunction with the low-level northerly flow sets up a convergence line on the eastern slopes of the SDC. The southern portion of this line experiences significant reduction in convective inhibition, and CI occurs over the SDC southeast quadrant. Thesimulated storm soon acquires supercellular characteristics, as observed. Additional simulations with varying LLJ strength also show CI over the southeast quadrant. A simulation without background flow generated convergence over the ridgeline, with widespread CI across the entire ridgeline. A simulation with mid- and upper-tropospheric westerlies removed indicates that CI is minimally influenced by gravity waves. We conclude that the low-level jet is sufficient to focus convection initiation over the southeast quadrant of the ridge.


Author(s):  
Joshua Hartigan ◽  
Robert A. Warren ◽  
Joshua S. Soderholm ◽  
Harald Richter

AbstractThe central east coast of Australia is frequently impacted by large hail and damaging winds associated with severe convective storms, with individual events recording damages exceeding AU$1 billion. These storms present a significant challenge for forecasting due to their development in seemingly marginal environments. They often have been observed to intensify upon approaching the coast, with case studies and climatological analyses indicating that interactions with the sea breeze are key to this process. The relative importance of the additional lifting and vorticity along the sea-breeze front compared to the change to a cooler, moister air mass with stronger low-level shear behind the front has yet to be investigated. Here, the role of the sea-breeze air mass is isolated using idealized numerical simulations of storms developing in a horizontally homogeneous environment. The base-state substitution (BSS) modeling technique is utilized to introduce the sea-breeze air mass following initial storm development. Compared to a simulation without BSS, the storm is longer lived and more intense, ultimately developing supercell characteristics including increased updraft rotation, deviant motion to the left of the mean wind vector, and a strong reflectivity gradient on the inflow edge. Separately simulating the changes in the thermodynamic and wind fields reveals that the enhanced storm longevity and intensity are primarily due to the latter. The change in the low-level environmental winds slows gust front propagation, allowing the storm to continue to ingest warm, potentially buoyant environmental air. At the same time, increased low-level shear promotes the development of persistent updraft rotation causing the storm to transition from a multicell to a supercell.


2011 ◽  
Vol 139 (8) ◽  
pp. 2367-2385 ◽  
Author(s):  
Hsiao-Wei Lai ◽  
Christopher A. Davis ◽  
Ben Jong-Dao Jou

AbstractThis study examines a subtropical oceanic mesoscale convective vortex (MCV) that occurred from 1800 UTC 4 June to 1200 UTC 6 June 2008 during intensive observing period (IOP) 6 of the Southwest Monsoon Experiment (SoWMEX) and the Terrain-influenced Monsoon Rainfall Experiment (TiMREX). A dissipating mesoscale convective system reorganized within a nearly barotropic vorticity strip, which formed as a southwesterly low-level jet developed to the south of subsiding easterly flow over the southern Taiwan Strait. A cyclonic circulation was revealed on the northern edge of the mesoscale rainband with a horizontal scale of 200 km. An inner subvortex, on a scale of 25–30 km with maximum shear vorticity of 3 × 10−3 s−1, was embedded in the stronger convection. The vortex-relative southerly flow helped create local potential instability favorable for downshear convection enhancement. Strong low-level convergence suggests that stretching occurred within the MCV. Higher θe air, associated with significant potential and conditional instability, and high reflectivity signatures near the vortex center suggest that deep moist convection was responsible for the vortex stretching. Dry rear inflow penetrated into the MCV and suppressed convection in the upshear direction. A mesolow was also roughly observed within the larger vortex. The presence of intense vertical wind shear in the higher troposphere limited the vortex vertical extent to about 6 km.


2011 ◽  
Vol 26 (4) ◽  
pp. 529-540
Author(s):  
Valdir Herrmann ◽  
Saulo Ribeiro de Freitas

This work studies the atmospheric CO2 budget in the Amazon basin, focusing on the role of shallow and deep convective systems. The vertical redistribution of CO2 is numerically simulated using an Eulerian transport model coupled to the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS). The transport model includes grid-scale advection, diffusion in the PBL (Planetary Boundary Layer) and convective transport by sub-grid shallow and deep moist convection. In the simulation, the mass conservation equation is solved for six tracers, including or not the shallow and deep moist convection terms. The rectifier effect is also showed through simulation of the transport to the free troposphere of PBL air masses with low CO2 concentrations due to assimilation by vegetation during the afternoon, when both CO2 fixation and convection are at their peak. The model is applied to simulate July 2001 with a 30 km grid resolution covering the northwest part of South America. We compare the model results with airborne CO2 observations collected in the Amazon basin during the 2001 CLAIRE field campaign.


2006 ◽  
Vol 134 (1) ◽  
pp. 149-171 ◽  
Author(s):  
Ming Xue ◽  
William J. Martin

Abstract Results from a high-resolution numerical simulation of the 24 May 2002 dryline convective initiation (CI) case are presented. The simulation uses a 400 km × 700 km domain with a 1-km horizontal resolution grid nested inside a 3-km domain and starts from an assimilated initial condition at 1800 UTC. Routine as well as special upper-air and surface observations collected during the International H2O Project (IHOP_2002) are assimilated into the initial condition. The initiation of convective storms at around 2015 UTC along a section of the dryline south of the Texas panhandle is correctly predicted, as is the noninitiation of convection at a cold-front–dryline intersection (triple point) located farther north. The timing and location of predicted CI are accurate to within 20 min and 25 km, respectively. The general evolution of the predicted convective line up to 6 h of model time also verifies well. Mesoscale convergence associated with the confluent flow around the dryline is shown to produce an upward moisture bulge, while surface heating and boundary layer mixing are responsible for the general deepening of the boundary layer. These processes produce favorable conditions for convection but the actual triggering of deep moist convection at specific locations along the dryline depends on localized forcing. Interaction of the primary dryline convergence boundary with horizontal convective rolls on its west side provides such localized forcing, while convective eddies on the immediate east side are suppressed by a downward mesoscale dryline circulation. A companion paper analyzes in detail the exact processes of convective initiation along this dryline.


2010 ◽  
Vol 25 (3) ◽  
pp. 970-984 ◽  
Author(s):  
Paloma Borque ◽  
Paola Salio ◽  
Matilde Nicolini ◽  
Yanina García Skabar

Abstract The present work focuses on the study of the environmental conditions preceding the development of a group of subtropical mesoscale convective systems over central and northern Argentina on 6–7 February 2003 during the South American Low Level Jet Experiment. This period was characterized by an extreme northerly low-level flow along the eastern Andes foothills [South American low-level jet (SALLJ)]. The entire studied episode was dominated by the presence of a very unstable air mass over northern Argentina and a frontal zone near 40°S. The SALLJ generated an important destabilization of the atmosphere due to the strong humidity and differential temperature advection. Orography provided an extra lifting motion to the configuration of the regional wind field, which was efficient in forcing the initiation of convection. Once convection developed, it moved and regenerated in regions where the convective instability was horizontally homogeneous and stronger.


2015 ◽  
Vol 143 (8) ◽  
pp. 2973-2997 ◽  
Author(s):  
Yunji Zhang ◽  
Fuqing Zhang ◽  
David J. Stensrud ◽  
Zhiyong Meng

Abstract The practical predictability of severe convective thunderstorms during the 20 May 2013 severe weather event that produced the catastrophic enhanced Fujita scale 5 (EF-5) tornado in Moore, Oklahoma, was explored using ensembles of convective-permitting model simulations. The sensitivity of initiation and the subsequent organization and intensity of the thunderstorms to small yet realistic uncertainties in boundary layer and topographical influence within a few hours preceding the thunderstorm event was examined. It was found that small shifts in either simulation time or terrain configuration led to considerable differences in the atmospheric conditions within the boundary layer. Small shifts in simulation time led to changes in low-level moisture and instability, primarily through the vertical distribution of moisture within the boundary layer due to vertical mixing during the diurnal cycle as well as advection by low-level jets, thereby influencing convection initiation. Small shifts in terrain led to changes in the wind field, low-level vertical wind shear, and storm-relative environmental helicity, altering locally enhanced convergence that may trigger convection. After initiation, an upscale growth of errors resulting from deep moist convection led to large forecast uncertainties in the timing, intensity, structure, and organization of the developing mesoscale convective system and its embedded supercells.


2014 ◽  
Vol 71 (5) ◽  
pp. 1681-1700 ◽  
Author(s):  
Zhuo Wang

Abstract The role of cumulus congestus (shallow and congestus convection) in tropical cyclone (TC) formation is examined in a high-resolution simulation of Tropical Cyclone Fay (2008). It is found that cumulus congestus plays a dominant role in moistening the lower to middle troposphere and spinning up the near-surface circulation prior to genesis, while deep convection plays a key role in moistening the upper troposphere and intensifying the cyclonic circulation over a deep layer. The transition from the tropical wave stage to the TC stage is marked by a substantial increase in net condensation and potential vorticity generation by deep convection in the inner wave pouch region. This study suggests that TC formation can be regarded as a two-stage process. The first stage is a gradual process of moisture preconditioning and low-level spinup, in which cumulus congestus plays a dominant role. The second stage commences with the rapid development of deep convection in the inner pouch region after the air column is moistened sufficiently, whereupon the concentrated convective heating near the pouch center strengthens the transverse circulation and leads to the amplification of the cyclonic circulation over a deep layer. The rapid development of deep convection can be explained by the power-law increase of precipitation rate with column water vapor (CWV) above a critical value. The high CWV near the pouch center thus plays an important role in convective organization. It is also shown that cumulus congestus can effectively drive the low-level convergence and provides a direct and simple pathway for the development of the TC protovortex near the surface.


Sign in / Sign up

Export Citation Format

Share Document