The Impact of the Afternoon Planetary Boundary-Layer Height on the Diurnal Cycle of CO and $$\hbox {CO}_{2}$$ Mixing Ratios at a Low-Altitude Mountaintop

2018 ◽  
Vol 168 (1) ◽  
pp. 81-102 ◽  
Author(s):  
Temple R. Lee ◽  
Stephan F. J. De Wekker ◽  
Sandip Pal
2010 ◽  
Vol 23 (21) ◽  
pp. 5790-5809 ◽  
Author(s):  
Shuyan Liu ◽  
Xin-Zhong Liang

Abstract An observational climatology of the planetary boundary layer height (PBLH) diurnal cycle, specific to surface characteristics, is derived from 58 286 fine-resolution soundings collected in 14 major field campaigns around the world. An objective algorithm determining PBLH from sounding profiles is first developed and then verified by available lidar and sodar retrievals. The algorithm is robust and produces realistic PBLH as validated by visual examination of several thousand additional soundings. The resulting PBLH from all existing data is then subject to various statistical analyses. It is demonstrated that PBLH occurrence frequencies under stable, neutral, and unstable regimes follow a narrow, intermediate, and wide Gamma distribution, respectively, over both land and oceans. Over ice all exhibit a narrow distribution. The climatological PBLH diurnal cycle is strong over land and oceans, with a distinct peak at 1500 and 1200 LT, whereas the cycle is weak over ice. Relative to midlatitude land, the PBLH variability over tropical oceans is larger during the morning and at night but much smaller in the afternoon. This study provides a unique observational database for critical model evaluation on the PBLH diurnal cycle and its temporal/spatial variability.


2020 ◽  
Vol 12 (14) ◽  
pp. 2272
Author(s):  
Tianfen Zhong ◽  
Nanchao Wang ◽  
Xue Shen ◽  
Da Xiao ◽  
Zhen Xiang ◽  
...  

The planetary boundary layer height (PBLH) is a vital parameter to characterize the surface convection, which determines the diffusion of air pollutants. The accurate inversion of PBLH is extremely important for the study of aerosol concentrations, in order to predict air quality and provide weather forecast. Aerosol lidar, a powerful remote sensing instrument for detecting the characteristics of atmospheric temporal and spatial evolution, can continuously retrieve the planetary boundary layer (PBL) and obtain high resolution measurements. However, multi-layer conditions, including one or more layers of aerosol, or cloud above the PBL, can seriously interfere the accuracy of PBLH determined by lidar. A new technique of maximum limited height initialization and range restriction (MLHI-RR) is proposed to eliminate the impact of multi-layer conditions on PBLH determination. Four widely used methods for deriving PBLH are utilized, in addition to the MLHI-RR constraint. Comparisons demonstrate that the proposed technique can determine the PBLH in multi-layer conditions with higher accuracy. The proposed technique requires no affiliate information besides lidar signals, which provide a convenient method for PBLH determination under complicated conditions.


2014 ◽  
Author(s):  
Gregori de Arruda Moreira ◽  
Fabio J. da Silva Lopes ◽  
Juan L. Guerrero-Rascado ◽  
Maria José Granados-Muñoz ◽  
Riad Bourayou ◽  
...  

2021 ◽  
pp. 118919
Author(s):  
Yubing Pan ◽  
Qianqian Wang ◽  
Pengkun Ma ◽  
Xingcan Jia ◽  
Zhiheng Liao ◽  
...  

2021 ◽  
Vol 41 (7) ◽  
pp. 0728002
Author(s):  
于思琪 Yu Siqi ◽  
刘东 Liu Dong ◽  
徐继伟 Xu Jiwei ◽  
王珍珠 Wang Zhenzhu ◽  
吴德成 Wu Decheng ◽  
...  

2020 ◽  
Vol 237 ◽  
pp. 02031
Author(s):  
Alexandros Pantazis ◽  
Alexandros Papayannis

In this work, a full set of recently developed algorithms and techniques is presented, for a single beam-single pointing lidar to be able to perform operational and independent accurate 3 Dimensional (3D) measurements, for slant range visibility, wind speed retrieval, atmospheric layers spatial distribution and categorization, as well as Planetary Boundary Layer Height (PBLH) retrieval, in real or Near Real Time (NRT).The idea behind this development was for any single lidar to be able to perform a set of accurately measured products, either mobile or stationary, with or without network connectivity with other sensors for data-information exchange. The products were determined by the needs of lidar remote scientific and commercial community, in order to be even more attractive and valuable to atmospheric scientists, meteorologists, aviation and shipping safety operators, as well as to the Space lidar community.


Sign in / Sign up

Export Citation Format

Share Document