scholarly journals FK506-binding protein 2 (FKBP13) inhibit Bax-induced apoptosis in Saccharomyces cerevisiae (yeast)

Author(s):  
Damilare D. Akintade ◽  
Bhabatosh Chaudhuri

AbstractFK506-binding protein 2 (FKBP13) is a part of the immunophilin protein family involved in immunoregulation. It is also believed to operate as a factor in membrane cytoskeletal framework and as an ER chaperone. FKBP2 (FKBP13) and FKBP1 (FKBP12), known as immunophilins, are binding proteins for rapamycin and FK506, which are immunosuppressive drugs. It was suggested that immunophilin-like and immunophilin proteins play significant roles in regulating intracellular calcium and protein folding/sorting, acting as molecular chaperones. Within the 15 mammalian FKBPs known, FKBP1 is merely the only one proven to form complexes with rapamycin and FK506 in the cytosol and facilitate their T cells immunosuppressive effects, FKBP2 is a luminal protein of the endoplasmic reticulum (ER) and is reported to take part in protein folding in the ER. However, little is known about FKBP2 link with apoptosis (either as a pro or anti-apoptotic protein). In this study, FKPB2 protein was co-expressed with the pro-apoptotic protein Bax after a yeast-based human hippocampal cDNA library screening. The yeast strain carrying the Bax gene was transformed with an episomal 2-micron plasmid that encodes the HA-tagged FKBP2 gene. The resultant strain would allow co-expression of Bax and FKBP2 in yeast cells. The results presented here show that a protein involved in protein folding can play a role in protecting yeast cell from Bax-induced apoptosis.

2020 ◽  
Vol 47 (9) ◽  
pp. 6785-6792 ◽  
Author(s):  
Damilare D. Akintade ◽  
Bhabatosh Chaudhuri

Abstract Eukaryotic elongation factor 1A1 (eEF1A1) is central to translational activity. It is involved in complexes that form signal transduction with protein kinase C, as well as being a signal transducer and activator of transcription 3. eEF1A1 and eEF1A2 are isoforms of the alpha subunit of elongating factor 1 complex. It has been reported that eEF1A1 is expressed in most human tissues but the brain, skeletal muscle and heart. eEF1A1 has been linked to both apoptosis and anti-apoptotic activities. In this study, eEF1A1 was co-expressed with Bax, a proapoptotic protein via heterologous expression of recombinant DNA in yeast cells. Assays were carried out to monitor the fate and state of yeast cells when eEF1A1 was co-expressed with Bax. The yeast strain (bearing an integrated copy of the Bax gene) was transformed with an episomal 2-micron plasmid that encodes HA-tagged eEF1A1 gene. The resultant strain would allow co-expression of Bax and eEF1A1 in yeast cells, Bax being under the control of the GAL1 promoter, while the PGK1 promoter drives eEF1A1 expression. Bcl 2A1, a known anti-apoptotic protein, was also co-expressed with Bax in yeast cells as a positive control, to study the anti-apoptotic characteristic of eEF-1A1. The part eEF1A1 plays in apoptosis has been contentious, amidst the pro and anti-apoptotic properties of eEF1A1, it was shown clearly, in this study that eEF1A1 portrays only anti-apoptotic property in the presence of pro-apoptotic protein, Bax.


2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110083
Author(s):  
Zhenya Gao ◽  
Fang Yu ◽  
Huanxia Jia ◽  
Zhuo Ye ◽  
Shijie Yao

Objective To detect the expression of FK506-binding protein 5 (FKBP5) in human papillary thyroid carcinoma (PTC) tissues, and explore its possible role in the progression of PTC. Methods FKBP5 expression levels were assessed in 115 PTC tissues and corresponding normal tissues by immunohistochemistry. We also examined the correlations between FKBP5 expression and clinicopathological factors and survival in 75 patients with PTC. The effects of FKBP5 on the proliferation and apoptosis of PTC cells were detected by colony-formation, MTT, and flow cytometry assays, respectively. We further investigated the effects of FKBP5 on tumor growth in mice. Results We revealed high expression levels of FKBP5 in human PTC tissues compared with normal tissues. Furthermore, high FKBP5 expression was associated with an increased incidence of intraglandular dissemination, and lower overall and progression-free survival. FKBP5 depletion remarkably suppressed the proliferation and induced apoptosis of PTC cells in vitro. FKBP5 further contributed to the growth of PTC tumors in mice. Conclusions The results of this study demonstrated the potential involvement of FKBP5 in the progression of PTC, and confirmed FKBP5 as a novel therapeutic target for PTC treatment.


Pneumologie ◽  
2018 ◽  
Vol 72 (S 01) ◽  
pp. S115-S115
Author(s):  
S Preisendoerfer ◽  
L Knüppel ◽  
L Binzenhöfer ◽  
IE Fernandez ◽  
BM Juan-Guardela ◽  
...  

2002 ◽  
Vol 68 (2) ◽  
pp. 464-469 ◽  
Author(s):  
Akira Ideno ◽  
Masahiro Furutani ◽  
Yoshitaka Iba ◽  
Yoshikazu Kurosawa ◽  
Tadashi Maruyama

ABSTRACT The 29-kDa FK506 binding protein (FKBP) gene is the only peptidyl-prolyl cis-trans isomerase (PPIase) gene in the genome of Pyrococcus horikoshii. We characterized the function of this FKBP (PhFKBP29) and used it to increase the production yield of soluble recombinant protein in Escherichia coli. The PPIase activity (k cat/Km ) of PhFKBP29 was found to be much lower than that of other archaeal 16- to 18-kDa FKBPs by a chymotrypsin-coupled assay of the oligo-peptidyl substrate at 15�C. Besides this low PPIase activity, PhFKBP29 showed chaperone-like protein folding activity which enhanced the refolding yield of chemically unfolded rhodanese in vitro. In addition, it suppressed thermal protein aggregation in a temperature range of 45 to 100�C. When the PhFKBP29 gene was coexpressed with the recombinant Fab fragment gene of the anti-hen egg lysozyme antibody in the cytoplasm of E. coli, whose expressed product tended to form an inactive aggregate in E. coli, it improved the yield of the soluble Fab fragments with antibody specificity. PhFKBP29 exerted protein folding and aggregation suppression in E. coli cells.


Nature ◽  
1990 ◽  
Vol 346 (6285) ◽  
pp. 674-677 ◽  
Author(s):  
Maximilian Tropschug ◽  
Elmar Wachter ◽  
Sabine Mayer ◽  
E. Ralf Schönbrunner ◽  
Franz X. Schmid

Sign in / Sign up

Export Citation Format

Share Document