Functional Identification of Cell Phenotypes Differentiating from Mice Retinal Neurospheres Using Single Cell Calcium Imaging

2011 ◽  
Vol 31 (6) ◽  
pp. 835-846 ◽  
Author(s):  
R. A. De Melo Reis ◽  
C. S. Schitine ◽  
A. Kofalvi ◽  
S. Grade ◽  
L. Cortes ◽  
...  
2011 ◽  
Vol 6 (3) ◽  
pp. 288-296 ◽  
Author(s):  
Maria Francisca Eiriz ◽  
Sofia Grade ◽  
Alexandra Rosa ◽  
Sara Xapelli ◽  
Liliana Bernardino ◽  
...  

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Curtis Easton ◽  
William Moody ◽  
Franck Kalume ◽  
Robert Hevner

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Rongqun Guo ◽  
Mengdie Lü ◽  
Fujiao Cao ◽  
Guanghua Wu ◽  
Fengcai Gao ◽  
...  

Abstract Background Knowledge of immune cell phenotypes, function, and developmental trajectory in acute myeloid leukemia (AML) microenvironment is essential for understanding mechanisms of evading immune surveillance and immunotherapy response of targeting special microenvironment components. Methods Using a single-cell RNA sequencing (scRNA-seq) dataset, we analyzed the immune cell phenotypes, function, and developmental trajectory of bone marrow (BM) samples from 16 AML patients and 4 healthy donors, but not AML blasts. Results We observed a significant difference between normal and AML BM immune cells. Here, we defined the diversity of dendritic cells (DC) and macrophages in different AML patients. We also identified several unique immune cell types including T helper cell 17 (TH17)-like intermediate population, cytotoxic CD4+ T subset, T cell: erythrocyte complexes, activated regulatory T cells (Treg), and CD8+ memory-like subset. Emerging AML cells remodels the BM immune microenvironment powerfully, leads to immunosuppression by accumulating exhausted/dysfunctional immune effectors, expending immune-activated types, and promoting the formation of suppressive subsets. Conclusion Our results provide a comprehensive AML BM immune cell census, which can help to select pinpoint targeted drug and predict efficacy of immunotherapy.


2019 ◽  
Vol 201 (11) ◽  
Author(s):  
Kristin Little ◽  
Jacob Austerman ◽  
Jenny Zheng ◽  
Karine A. Gibbs

ABSTRACTSwarming on rigid surfaces requires movement of cells as individuals and as a group of cells. For the bacteriumProteus mirabilis, an individual cell can respond to a rigid surface by elongating and migrating over micrometer-scale distances. Cells can form groups of transiently aligned cells, and the collective population is capable of migrating over centimeter-scale distances. To address howP. mirabilispopulations swarm on rigid surfaces, we asked whether cell elongation and single-cell motility are coupled to population migration. We first measured the relationship between agar concentration (a proxy for surface rigidity), single-cell phenotypes, and swarm colony phenotypes. We find that cell elongation and single-cell motility are coupled with population migration on low-percentage hard agar (1% to 2.5%) and become decoupled on high-percentage hard agar (>2.5%). Next, we evaluate how disruptions in lipopolysaccharide (LPS), specifically the O-antigen components, affect responses to hard agar. We find that LPS is not essential for elongation and motility of individual cells, as predicted, and instead functions to broaden the range of agar concentrations on which cell elongation and motility are coupled with population migration. These findings demonstrate that cell elongation and motility are coupled with population migration under a permissive range of surface conditions; increasing agar concentration is sufficient to decouple these behaviors. Since swarm colonies cover greater distances when these steps are coupled than when they are not, these findings suggest that collective interactions amongP. mirabiliscells might be emerging as a colony expands outwards on rigid surfaces.IMPORTANCEHow surfaces influence cell size, cell-cell interactions, and population migration for robust swarmers likeP. mirabilisis not fully understood. Here, we have elucidated how cells change length along a spectrum of sizes that positively correlates with increases in agar concentration, regardless of population migration. Single-cell phenotypes can be decoupled from collective population migration simply by increasing agar concentration. A cell’s lipopolysaccharides function to broaden the range of agar conditions under which cell elongation and single-cell motility remain coupled with population migration. In eukaryotes, the physical environment, such as a surface matrix, can impact cell development, shape, and migration. These findings support the idea that rigid surfaces similarly act on swarming bacteria to impact cell shape, single-cell motility, and collective population migration.


Sign in / Sign up

Export Citation Format

Share Document