scholarly journals Single-cell map of diverse immune phenotypes in the acute myeloid leukemia microenvironment

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Rongqun Guo ◽  
Mengdie Lü ◽  
Fujiao Cao ◽  
Guanghua Wu ◽  
Fengcai Gao ◽  
...  

Abstract Background Knowledge of immune cell phenotypes, function, and developmental trajectory in acute myeloid leukemia (AML) microenvironment is essential for understanding mechanisms of evading immune surveillance and immunotherapy response of targeting special microenvironment components. Methods Using a single-cell RNA sequencing (scRNA-seq) dataset, we analyzed the immune cell phenotypes, function, and developmental trajectory of bone marrow (BM) samples from 16 AML patients and 4 healthy donors, but not AML blasts. Results We observed a significant difference between normal and AML BM immune cells. Here, we defined the diversity of dendritic cells (DC) and macrophages in different AML patients. We also identified several unique immune cell types including T helper cell 17 (TH17)-like intermediate population, cytotoxic CD4+ T subset, T cell: erythrocyte complexes, activated regulatory T cells (Treg), and CD8+ memory-like subset. Emerging AML cells remodels the BM immune microenvironment powerfully, leads to immunosuppression by accumulating exhausted/dysfunctional immune effectors, expending immune-activated types, and promoting the formation of suppressive subsets. Conclusion Our results provide a comprehensive AML BM immune cell census, which can help to select pinpoint targeted drug and predict efficacy of immunotherapy.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hussein A. Abbas ◽  
Dapeng Hao ◽  
Katarzyna Tomczak ◽  
Praveen Barrodia ◽  
Jin Seon Im ◽  
...  

AbstractIn contrast to the curative effect of allogenic stem cell transplantation in acute myeloid leukemia via T cell activity, only modest responses are achieved with checkpoint-blockade therapy, which might be explained by T cell phenotypes and T cell receptor (TCR) repertoires. Here, we show by paired single-cell RNA analysis and TCR repertoire profiling of bone marrow cells in relapsed/refractory acute myeloid leukemia patients pre/post azacytidine+nivolumab treatment that the disease-related T cell subsets are highly heterogeneous, and their abundance changes following PD-1 blockade-based treatment. TCR repertoires expand and primarily emerge from CD8+ cells in patients responding to treatment or having a stable disease, while TCR repertoires contract in therapy-resistant patients. Trajectory analysis reveals a continuum of CD8+ T cell phenotypes, characterized by differential expression of granzyme B and a bone marrow-residing memory CD8+ T cell subset, in which a population with stem-like properties expressing granzyme K is enriched in responders. Chromosome 7/7q loss, on the other hand, is a cancer-intrinsic genomic marker of PD-1 blockade resistance in AML. In summary, our study reveals that adaptive T cell plasticity and genomic alterations determine responses to PD-1 blockade in acute myeloid leukemia.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 186
Author(s):  
Marcus Bauer ◽  
Christoforos Vaxevanis ◽  
Haifa Kathrin Al-Ali ◽  
Nadja Jaekel ◽  
Christin Le Hoa Naumann ◽  
...  

Background: Myelodysplastic syndromes (MDS) are caused by a stem cell failure and often include a dysfunction of the immune system. However, the relationship between spatial immune cell distribution within the bone marrow (BM), in relation to genetic features and the course of disease has not been analyzed in detail. Methods: Histotopography of immune cell subpopulations and their spatial distribution to CD34+ hematopoietic cells was determined by multispectral imaging (MSI) in 147 BM biopsies (BMB) from patients with MDS, secondary acute myeloid leukemia (sAML), and controls. Results: In MDS and sAML samples, a high inter-tumoral immune cell heterogeneity in spatial proximity to CD34+ blasts was found that was independent of genetic alterations, but correlated to blast counts. In controls, no CD8+ and FOXP3+ T cells and only single MUM1p+ B/plasma cells were detected in an area of ≤10 μm to CD34+ HSPC. Conclusions: CD8+ and FOXP3+ T cells are regularly seen in the 10 μm area around CD34+ blasts in MDS/sAML regardless of the course of the disease but lack in the surrounding of CD34+ HSPC in control samples. In addition, the frequencies of immune cell subsets in MDS and sAML BMB differ when compared to control BMB providing novel insights in immune deregulation.


2021 ◽  
Vol 8 ◽  
pp. 204993612110365
Author(s):  
Kundan Mishra ◽  
Suman Kumar ◽  
Sandeep Ninawe ◽  
Rajat Bahl ◽  
Ashok Meshram ◽  
...  

Introduction: Acute myeloid leukemia (AML) is the commonest leukemia in adults. Mortality in thew first 30-days ranges from 6% to 43%, while infections account for 30–66% of early deaths. We aim to present our experience of infections in newly-diagnosed AML. Method: This prospective, observational study, was undertaken at a tertiary care hospital in Northern India. Patients with confirmed AML (bone marrow morphology and flow cytometry) and who had developed febrile neutropenia (FN), were included. Result: A total of fifty-five patients were included in the study. The median age of the patients was 47.1 years (12–71) and 28 (50.9%) were males. Fever (33, 60%) was the commonest presentation at the time of diagnosis. One or more comorbid conditions were present in 20 patients (36.36%). Infection at presentation was detected in 17 patients (30.9%). The mean duration to develop febrile neutropenia since the start of therapy was 11.24 days. With each ten-thousand increase in white blood cell (WBC) count, the mean number of days of FN development decreased by 0.35 days ( p = 0.029). Clinical and/or radiological localization was possible in 23 patients (41.81%). Thirty-four blood samples (34/242, 14.04%) from 26 patients (26/55, 47.3%) isolated one or more organisms. Gram negative bacilli (GNB) were isolated in 24 (70.58%) samples. Burkholderia cepacia (8/34, 23.52%) was the commonest organism. The number of days required to develop febrile neutropenia was inversely associated with overall survival (OS). However, when compared, there was no statistically significant difference in OS between patients developing fever on day-10 and day-25 ( p = 0.063). Thirteen patients (23.63%) died during the study period. Discussion: Low percentage of blood culture positivity and high incidence of MDR organisms are a matter of concern. Days to develop febrile neutropenia were inversely associated with overall survival (OS), emphasizing the importance of preventive measures against infections. Conclusion: Infections continues to be a major cause of morbidity and mortality among AML patients.


Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2527-2534 ◽  
Author(s):  
Christian Récher ◽  
Odile Beyne-Rauzy ◽  
Cécile Demur ◽  
Gaëtan Chicanne ◽  
Cédric Dos Santos ◽  
...  

AbstractThe mammalian target of rapamycin (mTOR) is a key regulator of growth and survival in many cell types. Its constitutive activation has been involved in the pathogenesis of various cancers. In this study, we show that mTOR inhibition by rapamycin strongly inhibits the growth of the most immature acute myeloid leukemia (AML) cell lines through blockade in G0/G1 phase of the cell cycle. Accordingly, 2 downstream effectors of mTOR, 4E-BP1 and p70S6K, are phosphorylated in a rapamycin-sensitive manner in a series of 23 AML cases. Interestingly, the mTOR inhibitor markedly impairs the clonogenic properties of fresh AML cells while sparing normal hematopoietic progenitors. Moreover, rapamycin induces significant clinical responses in 4 of 9 patients with either refractory/relapsed de novo AML or secondary AML. Overall, our data strongly suggest that mTOR is aberrantly regulated in most AML cells and that rapamycin and analogs, by targeting the clonogenic compartment of the leukemic clone, may be used as new compounds in AML therapy.


2021 ◽  
Author(s):  
Anthony Z Wang ◽  
Jay Bowman-Kirigin ◽  
Rupen Desai ◽  
Pujan Patel ◽  
Bhuvic Patel ◽  
...  

Recent investigation of the meninges, specifically the dura layer, has highlighted its importance in CNS immune surveillance beyond a purely structural role. However, most of our understanding of the meninges stems from the use of pre-clinical models rather than human samples. In this study, we use single cell RNA-sequencing to perform the first characterization of both non-tumor-associated human dura and meningioma samples. First, we reveal a complex immune microenvironment in human dura that is transcriptionally distinct from that of meningioma. In addition, through T cell receptor sequencing, we show significant TCR overlap between matched dura and meningioma samples. We also identify a functionally heterogeneous population of non-immune cell types and report copy-number variant heterogeneity within our meningioma samples. Our comprehensive investigation of both the immune and non-immune cell landscapes of human dura and meningioma at a single cell resolution provide new insight into previously uncharacterized roles of human dura.


2019 ◽  
Author(s):  
Christian Matek ◽  
Simone Schwarz ◽  
Karsten Spiekermann ◽  
Carsten Marr

AbstractReliable recognition of malignant white blood cells is a key step in the diagnosis of hematologic malignancies such as Acute Myeloid Leukemia. Microscopic morphological examination of blood cells is usually performed by trained human examiners, making the process tedious, time-consuming and hard to standardise.We compile an annotated image dataset of over 18,000 white blood cells, use it to train a convolutional neural network for leukocyte classification, and evaluate the network’s performance. The network classifies the most important cell types with high accuracy. It also allows us to decide two clinically relevant questions with human-level performance, namely (i) if a given cell has blast character, and (ii) if it belongs to the cell types normally present in non-pathological blood smears.Our approach holds the potential to be used as a classification aid for examining much larger numbers of cells in a smear than can usually be done by a human expert. This will allow clinicians to recognize malignant cell populations with lower prevalence at an earlier stage of the disease.


Author(s):  
Benjamin B. Yellen ◽  
Jon S. Zawistowski ◽  
Eric A. Czech ◽  
Caleb I. Sanford ◽  
Elliott D. SoRelle ◽  
...  

AbstractSingle cell analysis tools have made significant advances in characterizing genomic heterogeneity, however tools for measuring phenotypic heterogeneity have lagged due to the increased difficulty of handling live biology. Here, we report a single cell phenotyping tool capable of measuring image-based clonal properties at scales approaching 100,000 clones per experiment. These advances are achieved by exploiting a novel flow regime in ladder microfluidic networks that, under appropriate conditions, yield a mathematically perfect cell trap. Machine learning and computer vision tools are used to control the imaging hardware and analyze the cellular phenotypic parameters within these images. Using this platform, we quantified the responses of tens of thousands of single cell-derived acute myeloid leukemia (AML) clones to targeted therapy, identifying rare resistance and morphological phenotypes at frequencies down to 0.05%. This approach can be extended to higher-level cellular architectures such as cell pairs and organoids and on-chip live-cell fluorescence assays.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Feng Jiang ◽  
Xin-Yu Wang ◽  
Ming-Yan Wang ◽  
Yan Mao ◽  
Xiao-Lin Miao ◽  
...  

Objective. The aim of this research was to create a new genetic signature of immune checkpoint-associated genes as a prognostic method for pediatric acute myeloid leukemia (AML). Methods. Transcriptome profiles and clinical follow-up details were obtained in Therapeutically Applicable Research to Generate Effective Treatments (TARGET), a database of pediatric tumors. Secondary data was collected from the Gene Expression Omnibus (GEO) to test the observations. In univariate Cox regression and multivariate Cox regression studies, the expression of immune checkpoint-related genes was studied. A three-mRNA signature was developed for predicting pediatric AML patient survival. Furthermore, the GEO cohort was used to confirm the reliability. A bioinformatics method was utilized to identify the diagnostic and prognostic value. Results. A three-gene (STAT1, BATF, EML4) signature was developed to identify patients into two danger categories depending on their OS. A multivariate regression study showed that the immune checkpoint-related signature (STAT1, BATF, EML4) was an independent indicator of pediatric AML. By immune cell subtypes analyses, the signature was correlated with multiple subtypes of immune cells. Conclusion. In summary, our three-gene signature can be a useful tool to predict the OS in AML patients.


2019 ◽  
Vol 08 (04) ◽  
pp. 193-197
Author(s):  
Anudishi Tyagi ◽  
Raja Pramanik ◽  
Radhika Bakhshi ◽  
Sreenivas Vishnubhatla ◽  
Sameer Bakhshi

AbstractThis prospective study aimed to compare the pattern of mitochondrial deoxyribonucleic acid D-loop (mt-DNA D-loop) variations in 41 paired samples of de novo pediatric acute myeloid leukemia (AML) (baseline vs. relapse) patients by Sanger's sequencing. Mean mt-DNA D-loop variation was 10.1 at baseline as compared with 9.4 per patients at relapse. In our study, 28 (68.3%) patients showed change in number of variations from baseline to relapse, 11 (26.8%) patients showed increase, 17 (41.6%) patients showed decrease, and 7 (17.1%) patients who suffered a relapse had a gain at position T489C. No statistically significant difference was observed in the mutation profile of mt-DNA D-loop region from baseline to relapse in the evaluated population of pediatric AML.


2019 ◽  
Vol 19 ◽  
pp. S234
Author(s):  
Kiyomi Morita ◽  
Feng Wang ◽  
Katharina Jahn ◽  
Jack Kuipers ◽  
Yuanqing Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document