scholarly journals Future changes in meteorological drought characteristics over Bangladesh projected by the CMIP5 multi-model ensemble

2020 ◽  
Vol 162 (2) ◽  
pp. 667-685
Author(s):  
Jamal Uddin Khan ◽  
A. K. M. Saiful Islam ◽  
Mohan K. Das ◽  
Khaled Mohammed ◽  
Sujit Kumar Bala ◽  
...  
2020 ◽  
Vol 21 (7) ◽  
pp. 1513-1530 ◽  
Author(s):  
Lingcheng Li ◽  
Dunxian She ◽  
Hui Zheng ◽  
Peirong Lin ◽  
Zong-Liang Yang

AbstractThis study elucidates drought characteristics in China during 1980–2015 using two commonly used meteorological drought indices: standardized precipitation index (SPI) and standardized precipitation–evapotranspiration index (SPEI). The results show that SPEI characterizes an overall increase in drought severity, area, and frequency during 1998–2015 compared with those during 1980–97, mainly due to the increasing potential evapotranspiration. By contrast, SPI does not reveal this phenomenon since precipitation does not exhibit a significant change overall. We further identify individual drought events using the three-dimensional (i.e., longitude, latitude, and time) clustering algorithm and apply the severity–area–duration (SAD) method to examine the drought spatiotemporal dynamics. Compared to SPI, SPEI identifies a lower drought frequency but with larger total drought areas overall. Additionally, SPEI identifies a greater number of severe drought events but a smaller number of slight drought events than the SPI. Approximately 30% of SPI-detected drought grids are not identified as drought by SPEI, and 40% of SPEI-detected drought grids are not recognized as drought by SPI. Both indices can roughly capture the major drought events, but SPEI-detected drought events are overall more severe than SPI. From the SAD analysis, SPI tends to identify drought as more severe over small areas within 1 million km2 and short durations less than 2 months, whereas SPEI tends to delineate drought as more severe across expansive areas larger than 3 million km2 and periods longer than 3 months. Given the fact that potential evapotranspiration increases in a warming climate, this study suggests SPEI may be more suitable than SPI in monitoring droughts under climate change.


Author(s):  
Samuel Jonson Sutanto ◽  
Henny A. J. Van Lanen

Abstract. Hydrological drought often gets less attention compared to meteorological drought. For water resources managers, information on hydrological drought characteristics is prerequisite for adequate drought planning and management. Therefore, the aim of this study is to analyse hydrological drought characteristics in the pan-European region based on past drought events from 1990 to 2017. The annual average drought duration, deficit volume, onset, termination, and intensity during drought years were calculated using daily runoff and groundwater data. All data were simulated with the LISFLOOD hydrological model (resolution 5×5 km) fed with gridded time series of observed weather data. Results based on runoff and groundwater data show that regions in Northeast to Southeast Europe, which stretched out from Poland to Bulgaria, were identified as profound regions to severe hydrological drought hazards. The most severe droughts during our study period were observed in 1992 to 1997, where on average Europe experienced drought events, which lasted up to 4 months. Long average drought durations up to 4 and 8 months in runoff and groundwater occurred in a few parts of the European regions (around 10 % area). Longer drought durations and a lower number of drought events were found in groundwater drought than in runoff, which proved that slow responding variables (groundwater) are better in showing extreme drought compared to fast responding variables (runoff). Based on our results, the water managers can better prepare for upcoming drought and foster drought adaptation actions.


2020 ◽  
Vol 51 (4) ◽  
pp. 666-685
Author(s):  
Bahram Saghafian ◽  
Hamid Sanginabadi

Abstract Drought characteristics are among major inputs in the planning and management of water resources. Although numerous studies on probabilistic aspects of meteorological drought characteristics and their joint distribution functions have been reported, multivariate analysis of groundwater (GW) drought is rarely available. In this paper, while proposing a framework for statistical analysis of disturbed hydrological systems, copula-based multivariate GW drought analysis was performed in an over-drafted aquifer. For this purpose, a 1,000-year synthetic time series of naturalized GW level was produced. GW drought was monitored via the Standardized GW Index (SGI) index while the multivariate GW drought probability and return period were determined via copulas. Comparison between the copula and empirical GW drought probabilities using statistical goodness-of-fit tests proved sufficient accuracy of copula models in multivariate drought analysis. The results showed strong dependence among GW drought characteristics. Generally speaking, multivariate GW drought analysis incorporates major drought characteristics and provides concrete scientific basis for planning drought management strategies.


2020 ◽  
Vol 246 ◽  
pp. 105111 ◽  
Author(s):  
Jianqing Zhai ◽  
Sanjit Kumar Mondal ◽  
Thomas Fischer ◽  
Yanjun Wang ◽  
Buda Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document