High performance decoding aware FPGA bit-stream compression using RG codes

2018 ◽  
Vol 22 (S6) ◽  
pp. 15007-15013 ◽  
Author(s):  
J. Satheesh Kumar ◽  
G. Saravana Kumar ◽  
A. Ahilan
Keyword(s):  
1998 ◽  
Vol 164 ◽  
pp. 395-396
Author(s):  
J. Nakajima ◽  
Y. Koyama ◽  
M. Sekido ◽  
H. Kiuchi ◽  
S. Hama ◽  
...  

AbstractA high performance VLBI recorder project using advanced digital technology started in 1995. TOSHIBA GBR 1000 and VLBI interface define 32 parallel, 32 MHz clock standard digital interface and support transparent recording/play-back to extremely high-speed digital bit stream. This is the formatter independent scientific recording bind the UTC to observed data. This highly reliable, low-bit-error-rate (10−16) recording system is also expected to be used in other scientific field. For the first example to examine the recorder performance in VLBI, we had been prepared 1024 Mbps sampler (256/512/1024 MSps, 2 bit, 4/2/1 ch). And here, an experimental giga-bit correlator specification for these VLBI acquisition system is introduced.


2010 ◽  
Vol 2010 ◽  
pp. 1-8
Author(s):  
Shih-Chang Hsia ◽  
Szu-Hong Wang ◽  
Ming-Huei Chen

Recently region-of-interest (ROI) based image coding is a popular topic. Since ROI area contains much more important information for an image, it must be prevented from error decoding while suffering from channel lost or unexpected attack. This paper presents an efficient error concealment method to recover ROI information with a hiding technique. Based on the progressive transformation, the low-frequency components of ROI are encoded to disperse its information into the high-frequency bank of original image. The capability of protection is carried out with extracting the ROI coefficients from the damaged image without increasing extra information. Simulation results show that the proposed method can efficiently reconstruct the ROI image when ROI bit-stream occurs errors, and the measurement of PSNR result outperforms the conventional error concealment techniques by 2 to 5 dB.


Author(s):  
Robert D. Cameron ◽  
Kenneth S. Herdy ◽  
Dan Lin

Author(s):  
A. V. Crewe ◽  
M. Isaacson ◽  
D. Johnson

A double focusing magnetic spectrometer has been constructed for use with a field emission electron gun scanning microscope in order to study the electron energy loss mechanism in thin specimens. It is of the uniform field sector type with curved pole pieces. The shape of the pole pieces is determined by requiring that all particles be focused to a point at the image slit (point 1). The resultant shape gives perfect focusing in the median plane (Fig. 1) and first order focusing in the vertical plane (Fig. 2).


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


Author(s):  
J W Steeds ◽  
R Vincent

We review the analytical powers which will become more widely available as medium voltage (200-300kV) TEMs with facilities for CBED on a nanometre scale come onto the market. Of course, high performance cold field emission STEMs have now been in operation for about twenty years, but it is only in relatively few laboratories that special modification has permitted the performance of CBED experiments. Most notable amongst these pioneering projects is the work in Arizona by Cowley and Spence and, more recently, that in Cambridge by Rodenburg and McMullan.There are a large number of potential advantages of a high intensity, small diameter, focussed probe. We discuss first the advantages for probes larger than the projected unit cell of the crystal under investigation. In this situation we are able to perform CBED on local regions of good crystallinity. Zone axis patterns often contain information which is very sensitive to thickness changes as small as 5nm. In conventional CBED, with a lOnm source, it is very likely that the information will be degraded by thickness averaging within the illuminated area.


Sign in / Sign up

Export Citation Format

Share Document