Mutual authentication scheme of IoT devices in fog computing environment

2020 ◽  
Author(s):  
Sunakshi Singh ◽  
Vijay Kumar Chaurasiya
2021 ◽  
Vol 18 (22) ◽  
pp. 413
Author(s):  
Ismail Zaharaddeen Yakubu ◽  
Lele Muhammed ◽  
Zainab Aliyu Musa ◽  
Zakari Idris Matinja ◽  
Ilya Musa Adamu

Cloud high latency limitation has necessitated the introduction of Fog computing paradigm that extends computing infrastructures in the cloud data centers to the edge network. Extended cloud resources provide processing, storage and network services to time sensitive request associated to the Internet of Things (IoT) services in network edge. The rapid increase in adoption of IoT devices, variations in user requirements, limited processing and storage capacity of fog resources and problem of fog resources over saturation has made provisioning and allotment of computing resources in fog environment a formidable task. Satisfying application and request deadline is the most substantial challenge compared to other dynamic variations in parameters of client requirements. To curtail these issues, the integrated fog-cloud computing environment and efficient resource selection method is highly required. This paper proposed an agent based dynamic resource allocation that employs the use of host agent to analyze the QoSrequirements of application and request and select a suitable execution layer. The host agent forwards the application request to a layer agent which is responsible for the allocation of best resource that satisfies the requirement of the application request. Host agent and layers agents maintains resource information tables for matching of task and computing resources. CloudSim toolkit functionalities were extended to simulate a realistic fog environment where the proposed method is evaluated. The experimental results proved that the proposed method performs better in terms of processing time, latency and percentage QoS delivery. HIGHLIGHTS The distance between the cloud infrastructure and the edge IoT devices makes the cloud not too competent for some IoT applications, especially the sensitive ones To minimize the latency in the cloud and ensure prompt response to user requests, Fog computing, which extends the cloud services to edge network was introduced The proliferation in adoption of IoT devices and fog resource limitations has made resource scheduling in fog computing a tedious one GRAPHICAL ABSTRACT


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Huijuan Wang ◽  
Yong Jiang

In a fog computing environment, lots of devices need to be authenticated in order to keep the platform being secured. To solve this problem, we turn to blockchain techniques. Unlike the identification cryptographic scheme based on elliptic curves, the proposed 2-adic ring identity authentication scheme inherits the high verification efficiency and high key distribution of sequence ciphers of 2-adic ring theory, and this algorithm adds identity hiding function and trading node supervision function by design. The main designed application scenario of this solution is applicable to the consortium blockchain, and the master nodes are mutually trusting cooperative relations. The node transaction verification and block generation consensus algorithm designed in this solution can be implemented in a set of algorithms, which has higher verification efficiency and easier to be deployed than other solutions. This scheme can be widely used in the fog computing environment.


2020 ◽  
Vol 11 (4) ◽  
pp. 17-30
Author(s):  
Shefali Varshney ◽  
Rajinder Sandhu ◽  
P. K. Gupta

Application placement in the fog environment is becoming one of the major challenges because of its distributed, hierarchical, and heterogeneous nature. Also, user expectations and various features of IoT devices further increase the complexity of the problem for the placement of applications in the fog computing environment. Therefore, to improve the QoE of various end-users for the use of various system services, proper placement of applications in the fog computing environment plays an important role. In this paper, the authors have proposed a service placement methodology for the fog computing environment. For a better selection of application services, AHP technique has been used which provides results in the form of ranks. The performance evaluation of the proposed technique has been done by using a customized testbed that considers the parameters like CPU cycle, storage, maximum latency, processing speed, and network bandwidth. Experimental results obtained for the proposed methodology improved the efficiency of the fog network.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3598 ◽  
Author(s):  
SungJin Yu ◽  
KiSung Park ◽  
YoungHo Park

With the development of cloud computing and communication technology, users can access the internet of things (IoT) services provided in various environments, including smart home, smart factory, and smart healthcare. However, a user is insecure various types of attacks, because sensitive information is often transmitted via an open channel. Therefore, secure authentication schemes are essential to provide IoT services for legal users. In 2019, Pelaez et al. presented a lightweight IoT-based authentication scheme in cloud computing environment. However, we prove that Pelaez et al.’s scheme cannot prevent various types of attacks such as impersonation, session key disclosure, and replay attacks and cannot provide mutual authentication and anonymity. In this paper, we present a secure and lightweight three-factor authentication scheme for IoT in cloud computing environment to resolve these security problems. The proposed scheme can withstand various attacks and provide secure mutual authentication and anonymity by utilizing secret parameters and biometric. We also show that our scheme achieves secure mutual authentication using Burrows–Abadi–Needham logic analysis. Furthermore, we demonstrate that our scheme resists replay and man-in-the-middle attacks usingthe automated validation of internet security protocols and applications (AVISPA) simulation tool. Finally, we compare the performance and the security features of the proposed scheme with some existing schemes. Consequently, we provide better safety and efficiency than related schemes and the proposed scheme is suitable for practical IoT-based cloud computing environment.


Fog computing is considered emerging technology nowadays. Due to proximity to the end user, fog computing provides a reliable transmission with low latency. In this paper, we have proposed an improved mutual authentication security scheme based on advanced encryption standard AES and hashed message authentication code HMAC in fog computing. Our scheme provides mutual authentication between edge devices and fog server in edge fog cloud computing environment. Further, the scheme has the resistance to man in the middle attack in the fog computing environment. Detailed security analyses are summarized.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 11
Author(s):  
Yoon Su Jeong ◽  
Yong Tae Kim ◽  
Gil Cheol Park

Background/Objectives: Due to the development of mobile communication technology, infrastructure construction from 4G to 5G service, which is currently being serviced, is actively under way. In particular, as the types and functions of mobile phones and IoT devices using 5G services are diversified, mutual authentication technology among multiple users is required.Methods/Statistical analysis: In this paper, we propose a multi - user authentication scheme which can efficiently mutually authenticate different types of mobile phones and IoT devices that are provided with 5G service. The proposed method minimizes the authentication delay time because it identifies the authentication security parameter δ of multiple users requesting authentication to the server as a polynomial coefficient. As a result of the performance evaluation, the proposed method showed an average improvement of 9.3% in authentication processing time and 5.5% lower overhead than the existing method. In addition, the multiuser authentication latency was improved by 6.1% on average compared with the existing scheme.Findings: The proposed scheme minimizes the user 's authentication delay time by constructing the users who simultaneously request the 5G service into a subnet and then applying the authentication security parameter δ constituting each subnet to n - bit and applying it to the polynomial coefficients. Especially, for multi - user authentication, the proposed scheme divides the authentication path into two paths (main path and secondary path) to guarantee user authentication and integrity. The proposed scheme is suitable for mobile phones and IoT devices that use low power because it generates keys without performing additional cryptographic algorithms like conventional techniques when performing multi - user authentication.Improvements/Applications: In future research, we plan to apply the proposed method to the actual environment based on the results of this study.  


Sign in / Sign up

Export Citation Format

Share Document