Trophic Structure of One Deep-sea Benthic Fish Community in the Eastern Canadian Arctic: Application of Food, Parasites and Multivariate Analysis

2005 ◽  
Vol 74 (3-4) ◽  
pp. 365-378 ◽  
Author(s):  
Chandra A. Chambers ◽  
Terry A. Dick
Polar Biology ◽  
2019 ◽  
Vol 42 (7) ◽  
pp. 1323-1341 ◽  
Author(s):  
Brynn M. Devine ◽  
Laura J. Wheeland ◽  
Bárbara de Moura Neves ◽  
Jonathan A. D. Fisher

2020 ◽  
Vol 637 ◽  
pp. 159-180
Author(s):  
ND Gallo ◽  
M Beckwith ◽  
CL Wei ◽  
LA Levin ◽  
L Kuhnz ◽  
...  

Natural gradient systems can be used to examine the vulnerability of deep-sea communities to climate change. The Gulf of California presents an ideal system for examining relationships between faunal patterns and environmental conditions of deep-sea communities because deep-sea conditions change from warm and oxygen-rich in the north to cold and severely hypoxic in the south. The Monterey Bay Aquarium Research Institute (MBARI) remotely operated vehicle (ROV) ‘Doc Ricketts’ was used to conduct seafloor video transects at depths of ~200-1400 m in the northern, central, and southern Gulf. The community composition, density, and diversity of demersal fish assemblages were compared to environmental conditions. We tested the hypothesis that climate-relevant variables (temperature, oxygen, and primary production) have more explanatory power than static variables (latitude, depth, and benthic substrate) in explaining variation in fish community structure. Temperature best explained variance in density, while oxygen best explained variance in diversity and community composition. Both density and diversity declined with decreasing oxygen, but diversity declined at a higher oxygen threshold (~7 µmol kg-1). Remarkably, high-density fish communities were observed living under suboxic conditions (<5 µmol kg-1). Using an Earth systems global climate model forced under an RCP8.5 scenario, we found that by 2081-2100, the entire Gulf of California seafloor is expected to experience a mean temperature increase of 1.08 ± 1.07°C and modest deoxygenation. The projected changes in temperature and oxygen are expected to be accompanied by reduced diversity and related changes in deep-sea demersal fish communities.


1989 ◽  
Vol 26 (10) ◽  
pp. 1880-1903 ◽  
Author(s):  
Alexander D. McCracken ◽  
Godfrey S. Nowlan

Carbonate and petroliferous carbonate units ("oil shales") on Southampton, Baffin, and Akpatok islands have yielded a total of 2277 conodonts, the more biostratigraphically useful of which indicate not all units are correlative. The Boas River "shale", the lower of the two petroliferous units on Southampton Island, overlies the Bad Cache Rapids Group and contains a diverse fauna, including elements of Amorphognathus ordovicicus Branson and Mehl. Previous reports have indicated the presence of Culumbodina penna Sweet, a species whose range only barely overlaps that of A. ordovicicus in the middle Maysvillian. Carbonate beds and bedding-plane surfaces of the higher Red Head Rapids Formation at Sixteen Mile Brook yielded A. ordovicicus faunas containing Aphelognathus cf. A. divergens Sweet. These beds are likely Richmondian, since A. divergens is known elsewhere only from Richmondian strata. A metasicula of "Glyptograptus" hudsoni Jackson, several natural conodont assemblages, and fused enigmatic coniform elements were also found at Sixteen Mile Brook.The petroliferous unit in unnamed strata at Amadjuak Lake on Baffin Island contains Belodina area Sweet, which is indicative of a late Edenian to early Maysvillian age. Conodonts from the petroliferous strata at Jordan River on Baffin Island suggest a Trentonian to early Maysvillian age. The conodonts recovered from unnamed strata on Akpatok Island are not very diagnostic but indicate an age range from Shermanian to Gamachian.


Polar Record ◽  
1995 ◽  
Vol 31 (178) ◽  
pp. 335-342 ◽  
Author(s):  
Paul A. Kay

AbstractSignificant warming in the Arctic is anticipated for doubled-CO2 scenarios, but temperatures in the eastern Canadian Arctic have not yet exhibited that trend in the last few decades. The spatial juxtaposition of the winter station in 1822–1823 of William Edward Parry's Northwest Passage expedition with the modern Igloolik Research Centre of the Science Institute of the Northwest Territories affords an opportunity for historical reconstruction and comparison. Parry's data are internally consistent. The association of colder temperatures with westerly and northerly winds, and wanner temperatures with easterly and southerly winds, is statistically significant. Temperatures are not exactly comparable between the two time periods because of differences in instrumentation, exposure, and frequency of readings. Nevertheless, in 1822–1823, November and December appear to have been cold and January to March mild compared to modern experience. Anomalously, winds were more frequently northerly (and less frequently westerly) in the latter months than in recent observations. Parry recorded two warm episodes in mid-winter, but, overall, it appears that the winter of 1822–1823 was not outside the range of modern experience.


Hydrobiologia ◽  
2007 ◽  
Vol 598 (1) ◽  
pp. 373-387 ◽  
Author(s):  
Katharina Eichbaum Esteves ◽  
Ana Valéria Pinto Lobo ◽  
Marcos Daniel Renó Faria

Sign in / Sign up

Export Citation Format

Share Document