Laboratory investigations on wave attenuation characteristics of Rhizophora Mucronata poir using physical models with bottom friction

Author(s):  
C. A. Lekshmy Devi ◽  
P. G. Jairaj ◽  
K. Balan
2014 ◽  
Vol 905 ◽  
pp. 348-352 ◽  
Author(s):  
Nuryazmeen Farhan Haron ◽  
Wardah Tahir

This paper reviews the physical models that had been used in order to conduct the experiment of estuarine salinity intrusion into rivers. Several studies used the physical models to get a better understanding of the estuary salinity mixing process and salt-wedge estuary characteristics along the flume. Besides, the laboratory investigations using the physical model also useful for verification purposes as discussed by previous researchers.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Fadime Sertcelik ◽  
Mehmet Guleroglu

AbstractNorth Anatolian Fault Zone, on which large earthquakes have occurred in the past, migrates regularly from east to west, and it is one of the most active faults in the world. The purpose of this study is to estimate the coda wave quality factor (


2014 ◽  
Vol 75 (2) ◽  
pp. 1057-1074 ◽  
Author(s):  
Ashvini Kumar ◽  
A. Sinvhal ◽  
A. Joshi ◽  
D. Kumar ◽  
Sandeep ◽  
...  

Author(s):  
Shank S. Kulkarni ◽  
Alireza Tabarraei ◽  
Pratik P. Ghag

The properties of the inclusions, viz. size, shape, and distribution significantly affect macroscopic properties of a polymer composite. Finite element (FE) modeling provides a viable approach for investigating the effects of the inclusions on the macroscopic properties of the polymer composite. In this paper, finite element method is used to investigate ultrasonic wave propagation in polymer matrix composite with a dispersed phase of inclusions. The finite element models are made up of three phases; viz. the polymer matrix, inclusions (micro constituent), and interphase zones between the inclusions and the polymer matrix. The analysis is performed on a three dimensional finite element model and the attenuation characteristics of ultrasonic longitudinal waves in the matrix are evaluated. The attenuation in polymer composite is investigated by changing the size, volume fraction of inclusions, and addition of interphase layer. The effect of loading frequency of the wave on the attenuation characteristics is also studied by varying the frequency in the range of 1–4 MHz. Results of the test revealed that higher volume fraction of inclusions gave higher attenuation in the polymer composite as compared to the lower volume fraction model. Smaller size of inclusions are preferred over larger size as they give higher wave attenuation. It was found that the attenuation characteristics of the polymer composite are better at higher frequencies as compared to lower frequencies. It is also concluded that the interphase later plays a significant role in the attenuation characteristics of the composite.


1980 ◽  
Vol 1 (17) ◽  
pp. 27 ◽  
Author(s):  
Franciscus Gerritsen

In attempting to specify criteria for the design of structures on coastal reefs, it was found that no adequate method existed to derive those criteria from the deep water wave conditions. In order to fill the gap, a program of measurements and analysis was initiated at the University of Hawaii. The program consisted of prototype and laboratory measurements. Great emphasis was placed on reliable field data, which were collected on Ala Moana Reef, in Honolulu. Laboratory investigations on the behavior of waves on shallow reefs are subject to scale effects; verification from field observations is required to obtain reliable results. As a result of this study, a mathematical model was developed for the calculation of wave attenuation and wave set-up on a shallow reef, using the incident waves in the ocean as boundary conditions. This paper discusses the general behavior of waves approaching a shallow reef and presents some essential characteristics of the mathematical model. The study is limited to waves approaching the shoreline at right angles. The results of this study can be extended to breakwaters with wide, submerged berms.


Sign in / Sign up

Export Citation Format

Share Document