Volume 9: Mechanics of Solids, Structures, and Fluids
Latest Publications


TOTAL DOCUMENTS

60
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791852149

Author(s):  
Salih Yildiz ◽  
Yiannis Andreopoulos ◽  
Feridun Delale

Many engineering structures, in applications such as automobiles, bridges, etc. are assembled by joining the different parts together. Therefore, joints in the mechanical applications play a critical role in durability, flexibility of the mechanical assemblies. Recent advances in adhesive technology have made adhesive joining one of the plausible options in many engineering applications that demand high impact resistance such as ground vehicle armor or civilian vehicles. However, because most of the polymer-based adhesives have non-linear mechanical behavior and loading rate sensitivity caused by their viscoelastic properties, characterization of the adhesives under different loading and environmental conditions become vital in the design of durable and reliable joints in any structure. This study investigated the mode I (bending) response of the adhesive joints to shock-wave loading generated in a large-scale shock tube. The critical failure pressure (P5) of adhesive joints was determined experimentally. Determining the material properties of the adhesive were estimated by the FEM parametric study, and energy absorption capacity of the adhesive joints under different strain rate loadings were investigated.


Author(s):  
Jikai Du

The application of composite material in structures can not only lower the component weight but also improve the system performance through its tailorable thermal and mechanical properties. However, because of the harsh environmental conditions that such structures may encounter during operation, the successful applications of such structures cannot be realized without appropriate techniques for their structural integrity evaluation. In this study, composite cylindrical structures consisting of composite and steel layers are being evaluated with X-ray diffraction technique and various ultrasound techniques. First, X-ray diffraction technique was applied for the quantitative determination of the residual stress in the steel layer. The influence of composite layer on the stress distribution was analyzed and how such residual stress study will improve the performance of the structure was discussed. Then various ultrasound techniques were applied for the detection of various defects, such as the defects at the surface and subsurface of inner steel layer, the different types of defects in the outer composite layer, and the defect, which is the most critical one, at the interface of steel/composite layer. During ultrasound evaluation, the composite material may not only increase the ultrasound attenuation but also change ultrasound traveling direction, and this can make the inspection more challenging. Theoretical calculations were carried out for the optimization of experimental parameters such as ultrasound frequency, incident angle, and focused ultrasound field calculation and so on. The limitations of ultrasound technique and the potential of other non-destructive techniques were also discussed according to experimental results.


Author(s):  
Bahador Bahmani ◽  
Philip Clarke ◽  
Reza Abedi

The microstructural design has an essential effect on the fracture response of brittle materials. We present a stochastic bulk damage formulation to model dynamic brittle fracture. This model is compared with a similar interfacial model for homogeneous and heterogeneous materials. The damage models are rate-dependent, and the corresponding damage evolution includes delay effects. The delay effect provides mesh objectivity with much less computational efforts. A stochastic field is defined for material cohesion and fracture strength to involve microstructure effects in the proposed formulations. The statistical fields are constructed through the Karhunen-Loeve (KL) method. An advanced asynchronous Spacetime Discontinuous Galerkin (aSDG) method is used to discretize the final system of coupled equations. Application of the presented formulation is shown through dynamic fracture simulation of rock under a uniaxial compressive load. The final results show that a stochastic bulk damage model produces more realistic results in comparison with a homogenizes model.


Author(s):  
Philipp W. Kutz ◽  
Frank Otremba ◽  
Jan Werner ◽  
Christian Sklorz

The use of glass-fiber reinforced plastic (GRP) can reduce the weight of tanks significantly. By replacing steel with GRP in tanks for gases (propane, etc.) a weight reduction of up to 50 % was reached. In this project not only the material should be optimized, but also the design. Previous tanks consist of a double-walled structure with an insulation layer between the two shells (e.g. vacuum). Goal of this project is to realize a single-walled construction of GRP with an insulation layer on the outside. To determine the temperature dependent material values, two different experiments are performed: In the first experiment, temperature dependent material properties of liquid nitrogen found in literature research are validated in a simple setup. The level of liquid nitrogen in a small jar is measured over the experiment time. Numerical simulation shows the change of nitrogen level with sufficient precision. In the second experiment, a liquid nitrogen is applied on one side of a GRP plate. Temperature is measured with thermocouples on top and bottom of the GRP plate, as well as in the middle of the plate. By use of numerical simulation, temperature dependent thermal conductivity is determined. In the third experiment, a test stand is designed to examine different insulation materials. In this test stand, the insulation material can easily be changed. A numerical simulation, in which the determined material data is used, is performed as well for this test stand. The experiments show, that GRP can be used in cryogenic environments. Multiphase simulations are a suitable tool to describe the energy absorption of thermal energy due to thermal phase change. Results on different insulation materials will follow.


Author(s):  
Y. Dixit ◽  
P. Begeman ◽  
G. Newaz ◽  
D. Board ◽  
Y. Chen ◽  
...  

This study compares the deformation characteristics of steel and carbon fiber composite (CFC) front bumper crush can (FBCC) assemblies when subjected to a full-overlap frontal impact into a rigid wall. Both the steel and composite bumper tests were conducted using a sled-on-sled testing method. Several high-speed cameras (HSCs) and accelerometers were used to gather kinematics data. The applied forces were measured using a load cell wall. For each test, the collective set of data was filtered, sorted, and analyzed to compare the performance of the steel and CFC bumpers. Similarities in Acceleration-Time plots suggested resemblance in the deformation patterns for both types of bumper systems. The difference observed in the velocity and displacement time-histories was because of the brittle nature of the composite material. The velocity-time history of the CFC FBCC had two distinct patterns, events suggesting adhesive bond failure between the bumper beam and the crush cans, which was validated through video tracking. Post-impact photographs showed a clear difference between the material behavior of composite and steel bumpers when subjected to high-velocity impact. The steel bumper beam was bent uniformly with intact, equally crushed crush cans. The composite beam was cracked in the middle and was detached from the crush cans.


Author(s):  
Saad Manzur ◽  
Md. Badiul Haque Shawon ◽  
Mahmuda Naznin ◽  
Tanvir R. Faisal

Plant petioles and stems are hierarchical structures comprising cellular tissues in one or more intermediate hierarchies displaying quasi random to heterogeneous cellularity that governs the overall structural properties. Exact replication of natural cellular tissue leads to the investigation of mechanical properties at the microstructural level. However, the micrographs often display artifacts due to experimental procedure and prevent representative spatial modeling of the tissues. Existing methods such as local thresholding or global thresholding (Otsu’s method) fail to effectively remove the artifacts. Hence, an efficient algorithm is required that can effectively help to reconstruct the geometric models of tissue microstructures by removing the noise. In this work, perception-based thresholding that conceptually works like human brain in differentiating noise from the actual ones based on color is introduced to remove discrete (within a cell) or adjacent (to the cell boundaries) noise. A variety of image dataset of non-woody plant tissues were tested with the algorithm, and its effectiveness in eliminating noise was quantitatively compared with existing noise removal techniques by Bivariate Similarity Index. The bivariate metrics indicate an enhanced performance of the perception-based thresholding over other considered algorithms.


Author(s):  
Roja Esmaeeli ◽  
Ashkan Nazari ◽  
Haniph Aliniagerdroudbari ◽  
Seyed Reza Hashemi ◽  
Muapper Alhadri ◽  
...  

The viscoelastic properties of rubbers play an important role in dynamic applications and are commonly measured and quantified by means of Dynamic Mechanical Analysis (DMA) tests. The rubber properties including the static and dynamic moduli are a function of temperature; and an increase in the temperature leads to a decrease in both moduli of the rubber. Due to the heat generation inside the rubber during the DMA test and the possible change of the rubber properties it is important to quantify the amount of temperature rise in the rubber specimen during the test. In this study, a Finite Element Analysis (FEA) model is used to predict the heat generation and temperature rise during the rubber DMA tests. This model is used to identify the best shape of the specimen to achieve the minimum increase in temperature during the test. The double sandwich shear test and the cyclic compression tests are considered in this study because these two tests are mostly used in industry to predict the rubber viscoelastic properties.


Author(s):  
Jayaram R. Pothnis ◽  
Dinesh Kalyanasundaram ◽  
Suhasini Gururaja

Numerical and experimental studies performed to develop nanocomposites with varying carbon nanotube (CNT) alignment density within an epoxy matrix are presented. A 3-D numerical model has been developed that looks at the behavior of CNTs in epoxy resin subjected to non-uniform electric fields by explicitly accounting for electric field coupled with fluid flow and particle motion considering the transient resin viscosity. The transient nature of resin viscosity has been incorporated into the simulation study with data related to resin viscosity variation with time and temperature generated experimentally. The response of CNTs due to the induced dielectrophoretic force was studied using the numerical model. The model facilitated the design of an optimal electrode configuration for the processing of variable density composites. A computer controlled Arduino UNO based circuitry was developed to control supply of voltage to the electrodes during sample fabrication. The circuit was then integrated with AC voltage supply units and the electrode set-up for fabricating the variable density composite samples. Low weight fractions of CNTs (0.05 wt.% and 0.1 wt.%) in epoxy resin were used for the experimental work and preliminary experimental studies were conducted. Electrical characterization results of the variable density nanocomposites indicate over 100% and 30% increase in electrical resistance measured across sample widths in 0.05 wt.% and 0.1 wt.% CNT samples, respectively. The measured sample resistance values confirmed that variation in CNT alignment density was achieved across the samples.


Author(s):  
Hamid Mohammadi ◽  
Roozbeh Dargazany

In this study, a micro-mechanical model for constitutive behavior of elastomers subjected to thermo-oxidative aging is proposed. The model is based on the network decomposition concept and lies within the framework of continuum mechanics. It is assumed that the aging process leads to the formation of a new network with tighter chains. Accordingly, the strain energy of the system is constituted of two independent sources, the energy of the original soft network and the one of the reformed network. These strain energies were computed by integration of entropic energy of polymer chains in each direction of a micro-sphere. The model demonstrates good agreement with different experimental data on relaxation and intermittent tests.


Author(s):  
Özgün Şener ◽  
Oğuzhan Dede ◽  
Oğuz Atalay ◽  
Mert Atasoy ◽  
Altan Kayran

Transverse shear moduli of the sandwich core and flexural stiffness of all-composite sandwich constructions are determined with three-point beam bending tests, and compared with the analytical and finite element analysis solutions. Additionally, Digital Image Correlation (DIC) system is employed to validate the experimental results by monitoring the displacements. The effect of orientation of the composite core material with respect to the beam axis on the shear modulus of the core material itself, flexural stiffness of the sandwich beam, maximum loading, and the maximum stresses on the sandwich panel are also examined. Comparable results are achieved through experiments, finite element and analytical analyses.


Sign in / Sign up

Export Citation Format

Share Document