scholarly journals An approach for evaluating the bioavailability and risk assessment of potentially toxic elements using edible and inedible plants—the Remance (Panama) mining area as a model

Author(s):  
Ana Cristina González-Valoys ◽  
José Ulises Jiménez Salgado ◽  
Rita Rodríguez ◽  
Tisla Monteza-Destro ◽  
Miguel Vargas-Lombardo ◽  
...  

AbstractMining affects the environment, particularly through the persistence of accumulation of tailings materials; this is aggravated under tropical climatic conditions, which favours the release of potentially toxic elements (PTEs) bioavailable to the local flora and fauna and supposing a risk to human health. The Remance gold mine (Panamá), exploited intermittently for more than 100 years, and has remained derelict for over 20 years. Within the area live farmers who carry out subsistence agriculture and livestock activities. The objective of this study has been to study the transference of PTEs in the local agricultural soil-plants system, with the goal of identifying their bioavailability to perform a human risk assessment. The results obtained of the Bioaccumulation coefficient in local plants show very weak to strong absorption of As (< 0.001–1.50), Hg (< 0.001–2.38), Sb (0.01–7.83), Cu (0.02–2.89), and Zn (0.06–5.32). In the case of Cu in grass (18.3 mg kg−1) and plants (16.9 mg kg−1) the concentrations exceed the maximum authorised value in animal nutrition for ruminants (10 mg kg−1). The risk to human health for edible plants exceeds the non-carcinogenic risk for rice, corn, cassava, and tea leaves for Sb (HQ 19.450, 18.304, 6.075, 1.830, respectively), the carcinogenic risk for Cu (CR = 2.3 × 10–3, 7.7 × 10 −4, 1.1 × 10–3, 1.0 × 10–3, respectively), and the carcinogenic risk for As in rice, corn and tea leaves (CR = 8 × 10–5, 3 × 10–5, 3 × 10–5, respectively). Urgent measures are needed to alleviate these effects.

Author(s):  
Liang Xiao ◽  
Yong Zhou ◽  
He Huang ◽  
Yu-Jie Liu ◽  
Ke Li ◽  
...  

Arable land soil is one of the most precious natural resources of Earth, it provides the fundamental material and numerous resources essential for the development of human society. To determine the pollution of potential toxic factors in the surface soil of cultivated land and its risks to human health, concentrations of five different potentially toxic elements (PTEs) were detected in 1109 soil samples collected in Xiangzhou, China, in 2019. In this study, health risk assessment was used to judge the degree of pollution in the study area, the result of Geographic Information System (GIS) was as used to research the spatial distribution characteristics of PTEs, and random forest (RF) was used to assess the natural and man-made influencing factors. We investigated the sources of PTEs through quantifying the indicators, which gave further insights. The main results are: (1) In arable land soil, the average content of PTEs is 0.14 mg/kg cadmium (Cd), 0.05 mg/kg mercury (Hg), 12.89 mg/kg arsenic (As), 29.23 mg/kg lead (Pb), and 78.58 mg/kg chromium (Cr), respectively. The content of As and Pb outpaced the background value of Hubei soil. (2) The human health risk assessment in Xiangzhou indicates that the most important exposure pathway is soil ingestion, occupied about 99% to health risks of PTEs; non-carcinogenic risk from exposure to As, Pb and Cr in soil was higher than the limit (overall potential risk index, HI > 1) for both children and adults. Moreover, carcinogenic risk postured by Cd, Cr, and As was higher than the limit (10−4) through soil exposure for both children and adults, indicating that Cd, As, Pb and Cr in soil have significant effect on people’s health through exposure. (3) We found that the increased PTEs in the arable land soil mainly originated from potential water sources, air and soil pollution sources, breeding farms, and mining areas.


Author(s):  
Xin Luo ◽  
Bozhi Ren ◽  
Andrew S. Hursthouse ◽  
Feng Jiang ◽  
Ren-jian Deng ◽  
...  

Abstract Potentially toxic elements (PTEs) in manganese ore areas are prevalent in rainwater runoff and pose a major threat to human health. In this study, field investigation and geostatistical analysis methods of Positive Matrix Factorization (PMF) and Geographic Information System (GIS) were used to systematically study the pollution in rainwater runoff from a manganese mining area in Xiangtan, China, to evaluate source contributions in the health risk assessment of PTEs. The average concentrations (mg/L) of six PTEs were: 0.3357 (Mn), 0.0450 (Ni), 0.0106 (Cu), 0.0148 (Zn), 0.0068 (Cd) and 0.0390 (Pb). The Coefficients of Variation (CV) for Mn and Zn were &gt;180% and &gt;130%, with the other analytes having values below 70%. The GIS and PMF analysis produced more refined spatial source apportionments, such as mining, smelting, transportation, agricultural production and natural sources. The results of the health risk assessment showed that the non-carcinogenic risk was negligible, and the carcinogenic risk was potentially dangerous but acceptable for both adults and children. In addition, the children's total carcinogenic risk value was greater than that of adults, highlighting their vulnerability. This study demonstrates the potential of PMF to provide a framework to spatially prioritize treatment objectives within the mining region to improve environmental conditions.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 613
Author(s):  
Samantha Jiménez-Oyola ◽  
Kenny Escobar Segovia ◽  
María-Jesús García-Martínez ◽  
Marcelo Ortega ◽  
David Bolonio ◽  
...  

Anthropogenic activities performed in the Ecuadorian Amazon have released potentially toxic elements (PTEs) into the rivers, causing severe environmental pollution and increasing the risk of exposure to the residents of the surrounding areas. This study aims to carry out a human health risk assessment using deterministic and probabilistic methods to estimate the hazard index (HI) and total cancer risk (TCR) related to multi-pathway human exposure to PTEs in polluted rivers. Concentrations of Al, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in surface water and sediment samples from rivers on the Ecuadorian Amazon were considered to assess the potential adverse human health effects. As a result, deterministic and probabilistic estimations of cancer and non-cancer risk through exposure to surface waters and sediments were above the safety limit. A sensitivity analysis identified the concentration of PTEs and the exposure duration (ED) as the two most important variables for probabilistic health risk assessment. The highest risk for receptors was related to exposure to polluted sediments through incidental ingestion and dermal contact routes. According to the deterministic estimation, the human health risk through ingestion of water was above the threshold in specific locations. This study reveals the potential health risk to which the population is exposed. This information can be used as a baseline to develop public strategies to reduce anthropogenic pollution and exposure to PTEs in Ecuadorian Amazon rivers.


2022 ◽  
pp. 129-139
Author(s):  
R.E. Masto ◽  
J. George ◽  
V.A. Selvi ◽  
R.C. Tripathi ◽  
N.K. Srivastava

Author(s):  
Dragana Pavlović ◽  
Marija Pavlović ◽  
Veljko Perović ◽  
Zorana Mataruga ◽  
Dragan Čakmak ◽  
...  

The primary focus of this research was the chemical fractionation of potentially toxic elements (PTEs) and their presence in several industrialised cities in Serbia. Furthermore, their origin, contamination levels, and environmental and human health risks were assessed. The results indicated that the examined soils were characterised by slightly higher Cu, Ni, Pb, and Zn levels than those set by European and national regulations. These elevated Cu, Pb, and Zn concentrations were caused by intensive traffic and proximity to industry, whereas the higher Ni levels were a result of the specific geological substrate of the soil in the study area. The environmental risk was found to be low and there was no enrichment/contamination of the soil with these elements, except in the case of Pb, for which moderate to significant enrichment was found. Lead also poses a potential non-carcinogenic risk to children through ingestion and requires special attention due to the fact that a significant proportion of this element was present in the tested soil samples in a potentially available form. Analysis of the health risks showed that children are more at risk than adults from contaminants and that ingestion is the riskiest exposure route. The carcinogenic risk was within the acceptable limits.


Sign in / Sign up

Export Citation Format

Share Document